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FWI: Full-waveform Inversion

I FWI is a PDE-constrained optimization method for subsurface recovery

argmin
m

d(uobs, u) s.t.L(m, f ;u) = 0

I Recover, e.g., subsurface velocity m from seismic data uobs through physics L
I Applications in hydrocarbon exploration, carbon sequestration, aquifer monitoring, etc.
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FWI: Full-waveform Inversion

I FWI is a PDE-constrained optimization method for subsurface recovery

argmin
m

d(uobs, u) s.t.L(m, f ;u) = 0

I Data uobs is petascale, ∼ 105 source functions f
I Computation made feasible by data parallelism
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FWI: Full-waveform Inversion

I FWI is a PDE-constrained optimization method for subsurface recovery

argmin
m

d(uobs, u) s.t.L(m, f ;u) = 0

I 3D elastic physics L over ∼ 35km× 40km× 15km domain
I Simulation is feasible due to pre-exascale high-performance computing systems
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FWI: Full-waveform Inversion

I FWI is a PDE-constrained optimization method for subsurface recovery

argmin
m

d(uobs, u) s.t.L(m, f ;u) = 0

I Model m is gigascale for 20m grid scale

I Computation made feasible by model parallelism via domain decomposition
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FWI: Full-waveform Inversion

Mathematical and computational challenges for modern FWI:

I Solution time is weeks to months

I Requires significant hands-on, expert intervention
I Uncertainty Quantification is generally infeasible

I Solution to the inverse problem is but one of many possible estimates
I Very important to characterize distribution of solutions
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FWI: Full-waveform Inversion

Mathematical and computational challenges for modern FWI:

I Solution time is weeks to months

I Requires significant hands-on, expert intervention
I Uncertainty Quantification is generally infeasible

I Solution to the inverse problem is but one of many possible estimates
I Very important to characterize distribution of solutions

Modern solution to modern challenges: Throw machine learning at it!

Scientific Machine Learning (SciML)

I Intersection of Computational Science & Engineering and Machine Learning

I Take our already large problems and make them larger!
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Scientific Machine Learning (SciML)

I Intersection of Computational Science & Engineering and Machine Learning

I Take our already large problems and make them larger!
I Scientific problems:

I Quasi-regular computation
I Massive compute
I Massive models
I Massive data
I Driven by physics

I Deep learning:
I Irregular computation
I Massive compute
I (Increasingly) massive models
I Massive data
I Driven by data
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PDE-Constrained Optimization and Deep Learning Models

I PDE Constrained Optimization

argmin
m

d(uobs, u) s.t.L(m, f ;u) = 0

I Deep Prior

argmin
θ

d(uobs, u) s.t.L(N (θ; z), f ;u) = 0

I Physics-informed NN

argmin
θ

d(uobs,N (θ; z)) s.t.L(m, f ;N (θ; z)) = 0
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Computational Challenges at Scale

Consider a DNN surrogate for subsurface models (deep prior) or wavefield (PINN).

I We functionally cannot accept smaller models.

I If classical problem requires domain decomposition, then so must the DNN!

I These networks also have extremely large number of DoFs, too!
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Searching for Parallelism

In the face of high computational cost, seek parallelism
I Parallelism in PDE-constrained optimization

I Data parallelism over multiple source functions
I Accelerated compute kernels on modern hardware
I Model parallelism over physical domain
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Searching for Parallelism

In the face of high computational cost, seek parallelism
I Parallelism in PDE-constrained optimization

I Data parallelism over multiple source functions
I Accelerated compute kernels on modern hardware
I Model parallelism over physical domain

I Parallelism in deep learning
I Data parallelism over multiple inputs
I Accelerated compute kernels on modern hardware

I What are we missing?
I Model parallelism!
I More challenging than for PDEs due to causality and lack of physical domain
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Distributed Deep Learning

Joint work w/
Thomas Grady (Math+CMDA ‘20)
Daniel Hagialigol (CMDA ‘22)
Jacob Merizian (Math+CS ‘20)
CMDA Capstone team (2020)
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Defining Networks

I A DNN is the composition of many non-linear functions

N (θ; z) = fn−1(θn−1, fn−2(θn−2, . . . f1(θ1, f0(θ0, z))))

I Each function fi is a layer

I All layer inputs, outputs, and internal parameters (weights) are high-order tensors
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Defining Networks

I A DNN is the composition of many non-linear functions

N (θ; z) = fn−1(θn−1, fn−2(θn−2, . . . f1(θ1, f0(θ0, z))))

I Each function fi is a layer

I All layer inputs, outputs, and internal parameters (weights) are high-order tensors

I Typical input or output tensor:

x ∈ R∧ {b× c× ni−1 × · · ·n1 × n0}

I b is the batch dimension
I c is the channel dimension
I ni is the ith feature dimension
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Defining Networks

I A DNN is the composition of many non-linear functions

N (θ; z) = fn−1(θn−1, fn−2(θn−2, . . . f1(θ1, f0(θ0, z))))

I Each function fi is a layer

I All layer inputs, outputs, and internal parameters (weights) are high-order tensors

I Typical convolution weight tensor:

w ∈ R∧ {cout × cin × ki−1 × · · · k1 × k0}

I cout is the output channel dimension
I cin is the input channel dimension
I ki is the ith dimension’s kernel size
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Defining Networks

I A DNN is the composition of many non-linear functions

N (θ; z) = fn−1(θn−1, fn−2(θn−2, . . . f1(θ1, f0(θ0, z))))

I Each function fi is a layer

I All layer inputs, outputs, and internal parameters (weights) are high-order tensors

I Typical linear or affine weight tensor:

W ∈ R∧ {cout × cin}

I cout is the output channel dimension
I cin is the input channel dimension
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Distributed Deep Learning

Data parallelism:

I Parallelize over the batch dimension

Pipelining:

I Parallelize across layers (intra-layer)

Model parallelism:

I Parallelize within layers (inter -layer)

I Parallelize within and across layers (inter-intra-layer)
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Inducing Domain Decomposition

In classical PDE-constrained optimization:
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Inducing Domain Decomposition

In classical PDE-constrained optimization:

RJH (Virginia Tech) Distributed Deep Learning SLIM Group Seminar 11 / 35



Inducing Domain Decomposition

In deep prior or PINN:
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Inducing Domain Decomposition

In general:
I No natural domain to decompose

I Each tensor has generally unique structure: dimensions vary wildly!
I Partition the input/output tensors

I Net result of decomposing classical domains
I Partially induced by individual layer structure

I Make intelligent choices for decomposing layer parameter tensors
I HPC architecture-induced
I Partially induced by input structure
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Defining Networks

To motivate our approach, consider how deep neural networks are constructed and trained.

I A DNN is the composition of many non-linear functions

N (θ; z) = fn−1(θn−1, fn−2(θn−2, . . . f1(θ1, f0(θ0, z))))

I Computing the gradient is the composition of many linear functions

N∗δθ = f∗0 f∗1 . . . f
∗
n−2f∗n−1δθn−1

I For each layer (function)
I An implementation of the action of forward function, f
I An implementation of the action of the adjoint of the Jacobian of f , f∗
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A Quick Aside: Automatic Differentiation

I Given a function, or an implementation of a function, f
I Two modes:

I Forward mode: application of the Jacobian of f , f
I Adjoint mode: application of the adjoint of the Jacobian of f , f∗

Forward Mode AD (PD) and Reverse Mode AD (PD)

I Implementation strategies:
I Pre-compiled source transformation (syntactic)
I Just-in-time construction of computation graph (semantic)
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Defining Network Layers

I In deep learning, automatic differentiation is used to get f∗

I But distributed computing libraries, like MPI, do not easily integrate with AD tools!

I Issues with syntactic methods / source transformation:
I Blocking communication

I What are the adjoints of MPI Send, MPI Recv, MPI Bcast, etc.?

I Nonblocking communication
I What are the adjoints of MPI Isend, MPI Irecv, MPI Ibcast, MPI Wait, etc.?

I No one AD’s the communication library (or the network!) (or the switch!)
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Defining Network Layers

I In deep learning, automatic differentiation is used to get f∗

I But distributed computing libraries, like MPI, do not easily integrate with AD tools!

I Issues with syntactic methods / source transformation:
I Blocking communication

I What are the adjoints of MPI Send, MPI Recv, MPI Bcast, etc.?

I Nonblocking communication
I What are the adjoints of MPI Isend, MPI Irecv, MPI Ibcast, MPI Wait, etc.?

I No one AD’s the communication library (or the network!) (or the switch!)

I How can we compute the adjoints if we can’t differentiate operations?
I Exploit semantics – mathematical meaning
I Linear functions are their own Jacobians
I We have freedom to choose inner products
I PyTorch supports this approach
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A Linear Algebraic Perspective of Memory

I A computer’s memory can represent Fn, a floating-point subset of Rn.

I Consider 〈a,b〉Fn =
∑n−1

i=0 aibi to be the inner product

I Then the adjoint (of the Jacobian) of a linear operator arises by requiring satisfaction of

〈Ax,y〉Fn = 〈x, A∗y〉Fm

I When we have such a trivial inner product, A∗ = AT
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A Linear Algebraic Perspective of Memory

We can exploit this to define three key operations on memory and data stored there:

Allocate (and Deallocate)

I Assume xa has been allocated. We need more space, xb = 0b.

I Allocation is an operator Ab : Fm → Fn, and

Abx =

[
Ia
Ob

] [
xa
]
=

[
xa
0b

]
I The adjoint of allocation is found through the inner product

A∗by = ATb y =
[
Ia Ob

] [ya
yb

]
=
[
ya
]

I The adjoint of allocation is deallocation (and vice versa): A∗b = Db
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A Linear Algebraic Perspective of Memory

We can exploit this to define three key operations on memory and data stored there:

Clear

I Sets a of a subset of allocated memory x, xb to 0

I Clear is an operator Kb : Fm → Fm, and

Kbx =

[
Ia

Ob

] [
xa
xb

]
=

[
xa
0b

]
I Clear is self-adjoint, K∗b = Kb
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A Linear Algebraic Perspective of Memory

We can exploit this to define three key operations on memory and data stored there:

Add

I In-place summation xa into xb
I Add is the operator Sa→b : Fm → Fm, and

Sa→bx =

[
Ia
Ia Ib

] [
xa
xb

]
=

[
xa

xa + xb

]
I The adjoint of add is found through the inner product

S∗a→by =

[
Ia Ib

Ib

] [
ya
yb

]
=

[
ya + yb

yb

]
= Sb→ay

I The adjoint of add is also add, in reverse direction
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A Linear Algebraic Perspective of Memory

Allocate, clear, and add give us two more important primitives:

Copy

I Can define in-place and out-of-place copy

I In-place copy is Ca→b : Fm → Fm

Ca→b =

[
Ia Ob
Ia Ob

]
=

[
Ia Ob
Ia Ib

] [
Ia Ob
Oa Ob

]
= Sa→bKb.

I Both copies and their adjoints are composition of previous primitives:

In-place Copy Out-of-place Copy

Ca→b = Sa→bKb Ca→b = Sa→bAb

C∗a→b = KbSb→a C∗a→b = DbSb→a

I Critical observation: the adjoint of a copy involves a sum!
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A Linear Algebraic Perspective of Memory

Allocate, clear, and add give us two more important primitives:

Move

I Can define in-place and out-of-place move

I In-place move is Ma→b : Fm → Fm

Ma→b =

[
Oa Ob
Ia Ob

]
=

[
Oa Ob
Oa Ib

] [
Ia Ob
Ia Ib

] [
Ia Ob
Oa Ob

]
= KaSa→bKb.

I Both moves and their adjoints are composition of previous primitives:

In-place Move Out-of-place Move

Ma→b = KaSa→bKb Ma→b = DaSa→bAb

M∗a→b = KbSb→aKa =Mb→a M∗a→b = DbSb→aAa =Mb→a
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Linear Algebraic Parallel Primitives

I This previous model applies for any memory on any computer!
I We were all probably thinking about a single node

I Local memory

I But our definition of memory is very inclusive
I Device memory
I Whole system memory / remote nodes (HPC)
I Local/remote disk
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Linear Algebraic Parallel Primitives

I We can compose these memory primitives to build a linear algebraic formulation of many
parallel data movement operations
I Send/receive (*)
I Scatter/gather
I Broadcast (*)
I Sum-reduce
I All-to-all / Transpose / Shuffle
I All-(sum)-reduce
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Linear Algebraic Parallel Primitives

Send/receive

I A send-receive pair is merely a copy or move from one node/worker/task to another
I Choice of ‘copy’ or ‘move’ interpretation is semantic

I Impacts structure of adjoint implementation
I If data is used locally after a send, it is a copy
I If data is not used locally after a send, it is a move

I If we interpret as a copy, the adjoint is still a sum then a clear
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Linear Algebraic Parallel Primitives

Broadcast

I Broadcast xa to k realizations x0, . . .xk−1 or k copy operations
I We construct the broadcast operator, Ba→{k},

Ba→{k}xa =


Ca→0

Ca→1
...

Ca→k−1

xa =


xa
xa
...
xa

 = x{k}.

I And its adjoint,

B∗a→{k}y{k} =
[
C∗a→0 C∗a→1 · · · C∗a→k−1

]
y{k} =

k−1∑
i=0

KiSi→ayi = ya.

I The adjoint of a broadcast is a sum-reduction
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Linear Algebraic Parallel Primitives

Other Primitives

I Sum-reduce
I adjoint is broadcast

I All-to-all/Shuffle/Transpose
I Block matrix of copy/moves
I adjoint is also transpose (not self-adjoint)

I Scatter (special case of Transpose)
I adjoint is gather

I Gather (special case of Transpose)
I adjoint is scatter

I All-sum-reduce
I self-adjoint
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Parallel Primitives for High-order Tensors

I We want to generalize these ideas to deep learning (and PDEs too)
I We propose data movement primitives specific to high-order tensors

I Broadcast
I Sum-reduce
I All-to-all / Transpose / Shuffle
I Halo Exchange
I All-(sum)-reduce
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Parallel Primitives for High-order Tensors

Broadcast

I The broadcast primitive holds for more than just standard MPI-style broadcast

I We can express NumPy-style broadcast semantics across tensor dimensions
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Parallel Primitives for High-order Tensors

Sum-reduce

I The sum-reduce primitive holds for more than just standard MPI-style reductions

I We can use the reverse of NumPy-style broadcast semantics across tensor dimensions
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Parallel Primitives for High-order Tensors

Transpose

I All-to-all works slightly differently

I We had to adapt an interpretation of all-to-all to high-order tensors

I This is how we get tensor scatters and gathers, too!
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Parallel Primitives for High-order Tensors

Transpose

I All-to-all works slightly differently

I We had to adapt an interpretation of all-to-all to high-order tensors

I This is how we get tensor scatters and gathers, too!
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Parallel Primitives for High-order Tensors

Halo Exchange
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Parallel Primitives for High-order Tensors

Halo Exchange

(w/ Thomas Grady)

I Halo exchange is not a standard parallel primitive
I We generally impose that the output tensor is computationally load balanced

I In general, even if input is load balanced, output is not guaranteed to be load balanced

I Required for sliding-window kernels on distributed tensors
I These kernels do not have regular size, as they would in, e.g., standard finite-differences

I Also required for, e.g., interpolation / upsampling
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Parallel Primitives for High-order Tensors

Halo Exchange

Input:

Output:

− − 0 1 2 3 4 5

0 1 2 3

Worker 0

2 3 4 5 6 7 8 9

4 5 6 7

Worker 1

6 7 8 9 10− −

8 9 10

Worker 2

This situation yields the “normal”, uniform halo sizes.

I Centered convolution kernel, size k = 5

I 1D input tensor, size n = 11

I 1D partition, size P = 3

I Zero-padding of width 2, implicitly on input boundaries
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Parallel Primitives for High-order Tensors

Halo Exchange

Input:

Output:

0 1 2 3 4 5 6

2 3 4

Worker 0

3 4 5 6 7 8

5 6

Worker 1

5 6 7 8 9 10

7 8

Worker 2

This situation yields unbalanced halo sizes.

I Centered convolution kernel, size k = 5

I 1D input tensor, size n = 11

I 1D partition, size P = 3

I No implicit zero-padding on input boundaries
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Parallel Primitives for High-order Tensors

Halo Exchange

Input:

Output:

0 1 2 3

0 2

Worker 0

4 5 6 7

4 6

Worker 1

7 8 9

8

Worker 2

This situation yields “simple” unbalanced halo sizes.

I Right-looking pooling kernel, size k = 2, stride s = 2

I 1D input tensor, size n = 10

I 1D partition, size P = 3

I No implicit zero-padding or dilation
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Parallel Primitives for High-order Tensors

Halo Exchange

Input:

Output:

0 1 2 3

0 2

Worker 0
4 5 6 7

4 6

Worker 1
8 9 1011

8 10

Worker 2
1112131415

1214

Worker 3
14151617

16

Worker 4
171819

18

Worker 5

This situation yields “complicated” unbalanced halo sizes.

I Right-looking pooling kernel, size k = 2, stride s = 2

I 1D input tensor, size n = 20

I 1D partition, size P = 6

I No implicit zero-padding or dilation
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Parallel Primitives for High-order Tensors

Halo Exchange

I Halo exchange is not a standard parallel primitive

I We construct a halo exchange from a series of clear and copy operations,

H = KTCUCECPKS,

I KS the setup operator to clear exchange buffers
I CP the pack operator to copy bulk region to send buffer
I CE the exchange operator to copy from workers’ send buffers to neighboring workers’ receive buffers
I CU the unpack operator to copy from receive buffer to halo region
I KT the teardown operator to clear exchange buffers

RJH (Virginia Tech) Distributed Deep Learning SLIM Group Seminar 29 / 35



Parallel Primitives for High-order Tensors

Halo Exchange

I D-dimensional partitioned tensors require one halo exchange for each dimension

H = KTd−1
CUd−1

CEd−1
CPd−1

KSd−1
. . .KT1CU1CE1CP1KS1KT0CU0CE0CP0KS0

I This handles all corner cases

I The adjoint thus requires summation into the bulk region from the halo regions

H∗ = K∗S0
C∗P0

C∗E0
C∗U0

K∗T0
K∗S1

C∗P1
C∗E1

C∗U1
K∗T1

. . .K∗Sd−1
C∗Pd−1

C∗Ed−1
C∗Ud−1

K∗Td−1
.

I We see this most easily from the linear algebraic definitions: each of the adjoint copies is
an add-clear
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Parallel Primitives for High-order Tensors

Adjoint Halo Exchange
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Parallel Primitives for High-order Tensors

Adjoint Halo Exchange
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Distributed DNN Layers

I We can compose distributed DNN Layers using linear operator forms of parallel primitives
I Right now we support the basic building blocks:

I Distributed Convolutional layers
I Distributed Pooling layers
I Distributed Linear/Affine layers
I Distributed Batchnorm layers
I Distributed Upsampling layers

I Support for other functions will be added as needed

I Element-wise layers (e.g., ReLU) do not require data movement
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Distributed DNN Layers

A simple distributed convolutional layer:

yi = SequentialConv(HaloExchange(xi); Broadcast(w), Broadcast(b))
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Distributed DNN Layers

A simple distributed convolutional layer:

yi = SequentialConv(HaloExchange(xi); Broadcast(w), Broadcast(b))

Forward Convolution Algorithm

1: Input: x δ
2: x̂← Hx δ
3: ŵ← B{Pr}→{Px}w δ

4: b̂← B{Pr}→{Px}b δ

5: y← Conv(ŵ, b̂; x̂) δ
6: Output: y δ

Adjoint Convolution Algorithm

1: Input: δy
2: δŵ, δb̂, δx̂← [δConv]∗(δy)
3: δb← R{Px}→{Pr}δb̂
4: δw← R{Px}→{Pr}δŵ
5: δx← H∗δx̂
6: Output: δx
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Distributed Deep Networks
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Distributed Deep Networks
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DistDL: Distributed Deep Learning

I DistDL: Distributed Deep Learning
I PyTorch + MPI based tool
I https://github.com/distdl/distdl
I https://distdl.readthedocs.io/en/latest/
I Absolutely a work in progress. . .

I Paper: https://arxiv.org/abs/2006.03108
I RJH, Thomas Grady
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Others involved:

I Daniel Hagialigol (current CMDA student)

I Thomas Grady (recent CMDA & Math graduate)

I Jacob Merizian (recent Math & CS graduate)

I Ananiya Admasu, Mason Beahr, & Sarah Kauffman (CMDA Capstone Team)
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Thank you! Question time!
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