A Linear-algebraic Approach to Distributed Deep Learning

Russell J. Hewett
Mathematics & CMDA, Virginia Tech

SLIM Group Seminar

February 19, 2021

RJH (Virginia Tech) Distributed Deep Learning SLIM Group Seminar 1/35

FWI: Full-waveform Inversion

> FWI is a PDE-constrained optimization method for subsurface recovery

argmin d(ueps,) s.t. L(m, f;u) =0
m

> Recover, e.g., subsurface velocity m from seismic data ueps through physics £
> Applications in hydrocarbon exploration, carbon sequestration, aquifer monitoring, etc.

RJH (Virginia Tech) Distributed Deep Learning SLIM Group Seminar 2/35

FWI: Full-waveform Inversion

> FWI is a PDE-constrained optimization method for subsurface recovery

argmin d(ueps,) s.t. L(m, f;u) =0
m

» Data ueps is petascale, ~ 10° source functions f
» Computation made feasible by data parallelism

RJH (Virginia Tech) Distributed Deep Learning

SLIM Group Seminar

YRS

FWI: Full-waveform Inversion

> FWI is a PDE-constrained optimization method for subsurface recovery

argmin d(ueps,) s.t. L(m, f;u) =0
m

» 3D elastic physics £ over ~ 35km x 40km x 15km domain
> Simulation is feasible due to pre-exascale high-performance computing systems

RJH (Virginia Tech) Distributed Deep Learning SLIM Group Seminar 2/35

FWI: Full-waveform Inversion

> FWI is a PDE-constrained optimization method for subsurface recovery

argmin d(ueps,) s.t. L(m, f;u) =0
m

> Model m is gigascale for 20m grid scale

RJH (Virginia Tech) Distributed Deep Learning SLIM Group Seminar 2/35

FWI: Full-waveform Inversion

> FWI is a PDE-constrained optimization method for subsurface recovery

argmin d(ueps,) s.t. L(m, f;u) =0
m

> Model m is gigascale for 20m grid scale
» Computation made feasible by model parallelism via domain decomposition

RJH (Virginia Tech) Distributed Deep Learning SLIM Group Seminar 2/35

FWI: Full-waveform Inversion

Mathematical and computational challenges for modern FWI:
> Solution time is weeks to months
» Requires significant hands-on, expert intervention

» Uncertainty Quantification is generally infeasible

> Solution to the inverse problem is but one of many possible estimates
» Very important to characterize distribution of solutions

RJH (Virginia Tech) Distributed Deep Learning SLIM Group Seminar 3/35

FWI: Full-waveform Inversion

Mathematical and computational challenges for modern FWI:
» Solution time is weeks to months
» Requires significant hands-on, expert intervention

» Uncertainty Quantification is generally infeasible

> Solution to the inverse problem is but one of many possible estimates
» Very important to characterize distribution of solutions

Modern solution to modern challenges: Throw machine learning at it! J

Scientific Machine Learning (SciML)
> Intersection of Computational Science & Engineering and Machine Learning

> Take our already large problems and make them larger!

RJH (Virginia Tech) Distributed Deep Learning SLIM Group Seminar 3/35

Scientific Machine Learning (SciML)

> Intersection of Computational Science & Engineering and Machine Learning
> Take our already large problems and make them larger!
> Scientific problems:

> Quasi-regular computation

» Massive compute

> Massive models

> Massive data

» Driven by physics
» Deep learning:

> Irregular computation

» Massive compute

> (Increasingly) massive models

> Massive data

> Driven by data

RJH (Virginia Tech) Distributed Deep Learning SLIM Group Seminar 4/35

PDE-Constrained Optimization and Deep Learning Models

» PDE Constrained Optimization

argmin d(ueps,) s.t. L(m, f;u) =0

m

» Deep Prior

arg min d(ueps, u) s.t. LIN(0; 2), f;u) =0
0

» Physics-informed NN

argmin d(uops, N'(6; 2)) s.t. L(m, f; N'(0;2)) =0
0

RJH (Virginia Tech) Distributed Deep Learning SLIM Group Seminar 5/35

Computational Challenges at Scale

Consider a DNN surrogate for subsurface models (deep prior) or wavefield (PINN).
» We functionally cannot accept smaller models.
> If classical problem requires domain decomposition, then so must the DNN!

> These networks also have extremely large number of DoFs, too!

Data Model

H_.

Encoder Decoder Residual

R Latent
[} 1 :
1 1 :
[} 1
! 1

1
1
[

| |
[
1
[

PDE Constraint

RJH (Virginia Tech) Distributed Deep Learning SLIM Group Seminar 6/35

Searching for Parallelism

In the face of high computational cost, seek parallelism
» Parallelism in PDE-constrained optimization

» Data parallelism over multiple source functions
» Accelerated compute kernels on modern hardware
» Model parallelism over physical domain

RJH (Virginia Tech) Distributed Deep Learning

SLIM Group Seminar 7/35

Searching for Parallelism

In the face of high computational cost, seek parallelism
» Parallelism in PDE-constrained optimization

» Data parallelism over multiple source functions
» Accelerated compute kernels on modern hardware
» Model parallelism over physical domain

> Parallelism in deep learning

> Data parallelism over multiple inputs
» Accelerated compute kernels on modern hardware

RJH (Virginia Tech) Distributed Deep Learning

SLIM Group Seminar 7/35

Searching for Parallelism

In the face of high computational cost, seek parallelism
» Parallelism in PDE-constrained optimization
» Data parallelism over multiple source functions
» Accelerated compute kernels on modern hardware
» Model parallelism over physical domain
> Parallelism in deep learning
» Data parallelism over multiple inputs
» Accelerated compute kernels on modern hardware
> What are we missing?

> Model parallelism!
» More challenging than for PDEs due to causality and lack of physical domain

RJH (Virginia Tech) Distributed Deep Learning SLIM Group Seminar 7/35

Distributed Deep Learning

Joint work w/
Thomas Grady (Math+CMDA ‘20)
Daniel Hagialigol (CMDA 22)
Jacob Merizian (Math+CS '20)
CMDA Capstone team (2020)

DistDL

Model Parallelism
for PyTorch

RJH (Virginia Tech) Distributed Deep Learning SLIM Group Seminar 8/35

Defining Networks

> A DNN is the composition of many non-linear functions

N(0;2) = fa—1(0n-1, fa—2(0n—2, ... f1(01, fo(bo, 2))))

» Each function f; is a layer

» All layer inputs, outputs, and internal parameters (weights) are high-order tensors

RJH (Virginia Tech) Distributed Deep Learning SLIM Group Seminar 9/35

Defining Networks

> A DNN is the composition of many non-linear functions

N(0;2) = fa—1(0n-1, fa—2(0n—2, ... f1(01, fo(bo, 2))))

» Each function f; is a layer

» All layer inputs, outputs, and internal parameters (weights) are high-order tensors
» Typical input or output tensor:
r€RMbxecxng1x--ng Xng}

» b is the batch dimension
» ¢ is the channel dimension
> n; is the it feature dimension

RJH (Virginia Tech) Distributed Deep Learning SLIM Group Seminar 9/35

Defining Networks

> A DNN is the composition of many non-linear functions

N(0;2) = fa—1(0n-1, fa—2(0n—2, ... f1(01, fo(bo, 2))))

» Each function f; is a layer

» All layer inputs, outputs, and internal parameters (weights) are high-order tensors

» Typical convolution weight tensor:
w € R™ {cout X Cin X ki1 X ---k1 X ko}
P Cout is the output channel dimension

» ¢y is the input channel dimension
> k, is the ith dimension's kernel size

RJH (Virginia Tech) Distributed Deep Learning SLIM Group Seminar

9/35

Defining Networks

> A DNN is the composition of many non-linear functions

N(0;2) = fa—1(0n-1, fa—2(0n—2, ... f1(01, fo(bo, 2))))

» Each function f; is a layer

» All layer inputs, outputs, and internal parameters (weights) are high-order tensors
> Typical linear or affine weight tensor:
W e R/\ {Cout X Cin}

P cout is the output channel dimension
» ¢y is the input channel dimension

RJH (Virginia Tech) Distributed Deep Learning SLIM Group Seminar 9/35

Distributed Deep Learning

et HetH e

inter

Data parallelism:

> Parallelize over the batch dimension
Pipelining:

> Parallelize across layers (intra-layer)
Model parallelism:

> Parallelize within layers (inter-layer)

> Parallelize within and across layers (inter-intra-layer)

RJH (Virginia Tech) Distributed Deep Learning SLIM Group Seminar 10/35

Inducing Domain Decomposition

In classical PDE-constrained optimization:

RJH (Virginia Tech) Distributed Deep Learning SLIM Group Seminar 11/35

Inducing Domain Decomposition

In classical PDE-constrained optimization:

RJH (Virginia Tech) Distributed Deep Learning SLIM Group Seminar 11/35

Inducing Domain Decomposition

In deep prior or PINN:

Data

Latent

1 1

] !
|

L '

1 |

PDE Constraint

Encoder Decoder Residual

RJH (Virginia Tech) Distributed Deep Learning SLIM Group Seminar 11/35

Inducing Domain Decomposition

In general:
» No natural domain to decompose
> Each tensor has generally unique structure: dimensions vary wildly!
> Partition the input/output tensors
> Net result of decomposing classical domains
» Partially induced by individual layer structure
> Make intelligent choices for decomposing layer parameter tensors

» HPC architecture-induced

> Partially induced by input structure

iI

Distributed Deep Learning

RJH (Virginia Tech)

[92]

LIM

o

roup Seminar

11/35

Defining Networks

To motivate our approach, consider how deep neural networks are constructed and trained.

> A DNN is the composition of many non-linear functions
N(0:2) = fn1(0n-1, fa—2(0n-2, ... f1(01, fo(0o, 2))))
» Computing the gradient is the composition of many linear functions
N*00 =3ty ... £ _ofr_100p_1

» For each layer (function)

» An implementation of the action of forward function, f
> An implementation of the action of the adjoint of the Jacobian of f, f*

RJH (Virginia Tech) Distributed Deep Learning SLIM Group Seminar 12/35

A Quick Aside: Automatic Differentiation

> Given a function, or an implementation of a function, f
» Two modes:

> Forward mode: application of the Jacobian of f, f
> Adjoint mode: application of the adjoint of the Jacobian of f, f*

<
L
Ws = W3 + Wy §0 4

< &3
28 gs
S s g Wy = Ws W3 = Wse = Ws - 1
g > - B
= . .]
22 wa Wi, + wivi g3

2 £
o8 e)
52 i G Dwn
238 @ o W = g cos(wy) W2 = W35y, = Wswi
25 i, b seeds, i, € {0,1}

X =W+ WP =cos(x1) +x2 K= =x

Forward Mode AD (PD) and Reverse Mode AD (PD)
P> Implementation strategies:

> Pre-compiled source transformation (syntactic)
> Just-in-time construction of computation graph (semantic)

RJH (Vi a Tech) Distributed Deep Learning SLIM Group Seminar 13/35

https://commons.wikimedia.org/wiki/File:ForwardAccumulationAutomaticDifferentiation.png
https://commons.wikimedia.org/wiki/File:ReverseaccumulationAD.png

Defining Network Layers

> In deep learning, automatic differentiation is used to get f*

» But distributed computing libraries, like MPI, do not easily integrate with AD tools!

> Issues with syntactic methods / source transformation:
» Blocking communication
» What are the adjoints of MPI_Send, MPI_Recv, MPI Bcast, etc.?
» Nonblocking communication
» What are the adjoints of MPI_Isend, MPI_Irecv, MPI_Ibcast, MPI_Wait, etc.?
» No one AD’s the communication library (or the network!) (or the switch!)

RJH (Virginia Tech) Distributed Deep Learning SLIM Group Seminar 14 /35

Defining Network Layers

> In deep learning, automatic differentiation is used to get f*
» But distributed computing libraries, like MPI, do not easily integrate with AD tools!

> Issues with syntactic methods / source transformation:

» Blocking communication
» What are the adjoints of MPI_Send, MPI_Recv, MPI Bcast, etc.?

» Nonblocking communication
» What are the adjoints of MPI_Isend, MPI_Irecv, MPI_Ibcast, MPI_Wait, etc.?

> No one AD's the communication library (or the network!) (or the switch!)

> How can we compute the adjoints if we can't differentiate operations?

» Exploit semantics — mathematical meaning
> Linear functions are their own Jacobians

» We have freedom to choose inner products
» PyTorch supports this approach

RJH (Virginia Tech) Distributed Deep Learning SLIM Group Seminar 14 /35

A Linear Algebraic Perspective of Memory

> A computer's memory can represent ", a floating-point subset of R".

» Consider (a,b)gp, = > 1", ! aib; to be the inner product

» Then the adjoint (of the Jacobian) of a linear operator arises by requiring satisfaction of
<AX7 Y>IFn = <Xa A*Y>]Fm

» When we have such a trivial inner product, A* = A”

RJH (Virginia Tech) Distributed Deep Learning SLIM Group Seminar 15/35

A Linear Algebraic Perspective of Memory

We can exploit this to define three key operations on memory and data stored there:

Allocate (and Deallocate)

> Assume X, has been allocated. We need more space, x; = 0.
> Allocation is an operator Ay : " — F”, and

=]l =[5)

» The adjoint of allocation is found through the inner product
Ay =Aly =1, 0, Y| =
by =4y =L O] | = [y

» The adjoint of allocation is deallocation (and vice versa): A; = Dy

RJH (Virginia Tech) Distributed Deep Learning SLIM Group Seminar 16 /35

A Linear Algebraic Perspective of Memory

We can exploit this to define three key operations on memory and data stored there:

Clear

> Sets a of a subset of allocated memory x, x; to 0
» Clear is an operator K : F"™ — [F™, and

o= o] 3l

» Clear is self-adjoint, K; = Kj,

RJH (Virginia Tech) Distributed Deep Learning SLIM Group Seminar 16 /35

A Linear Algebraic Perspective of Memory

We can exploit this to define three key operations on memory and data stored there:

Add

P In-place summation x, into x;
» Add is the operator S,_,, : F™ — F™, and

g _ a Xa| _ | Xa
a=bX = I, Iy |xp o Xq + Xp

» The adjoint of add is found through the inner product

. I, I Ya:| [ya + Yb}
a—bY [Ib] [yb Vb b=a¥

» The adjoint of add is also add, in reverse direction

RJH (Virginia Tech) Distributed Deep Learning SLIM Group Seminar 16 /35

A Linear Algebraic Perspective of Memory

Allocate, clear, and add give us two more important primitives:

Copy

> Can define in-place and out-of-place copy
> In-place copy is Cysp : F™ — F™

_IaOb_IaOb IaOb_
Ca—)b - |:Ia, Ob:| - |:—[a Ib:l I:Oa, Ob:| - Sa—)be-

> Both copies and their adjoints are composition of previous primitives:

In-place Copy Out-of-place Copy
Casb = SasoKp Casb = Sa—spAp
Co_p = KpSp—sa Copy = DpSpsq

> Critical observation: the adjoint of a copy involves a sum!
Distributed Deep Learning

A Linear Algebraic Perspective of Memory

Allocate, clear, and add give us two more important primitives:
Move

» Can define in-place and out-of-place move
» In-place move is M,_,; : F"* — F™

|04 Oy| |04 Oy| (1a Oyl |1 Op| _
Mam = |:Ia Ob:| B |:Oa Ib:| |:Ia Ib:| |:Oa Ob:| = KuSa—pKp.

» Both moves and their adjoints are composition of previous primitives:

In-place Move Out-of-place Move

Mgy = KoSasp Ky Mgy = DySo_pAp
M;—>b = KpSp—alKa = Mp—q M;—>b = DpSpala = My_,q

RJH (Virginia Tech) Distributed Deep Learning SLIM Group Seminar 17 /35

Linear Algebraic Parallel Primitives

» This previous model applies for any memory on any computer!
> We were all probably thinking about a single node

> Local memory
> But our definition of memory is very inclusive

» Device memory
> Whole system memory / remote nodes (HPC)
> Local/remote disk

RJH (Virginia Tech) Distributed Deep Learning SLIM Group Seminar 18 /35

Linear Algebraic Parallel Primitives

> We can compose these memory primitives to build a linear algebraic formulation of many
parallel data movement operations
> Send/receive (¥*)
Scatter/gather
Broadcast (*)
Sum-reduce
All-to-all / Transpose / Shuffle
All-(sum)-reduce

vVVVYYVY

RJH (Virginia Tech) Distributed Deep Learning SLIM Group Seminar 19/35

Linear Algebraic Parallel Primitives

Send/receive

> A send-receive pair is merely a copy or move from one node/worker/task to another
» Choice of ‘copy’ or ‘move’ interpretation is semantic

» Impacts structure of adjoint implementation
> If data is used locally after a send, it is a copy
> If data is not used locally after a send, it is a move

> If we interpret as a copy, the adjoint is still a sum then a clear

RJH (Virginia Tech) Distributed Deep Learning SLIM Group Seminar 20/35

Linear Algebraic Parallel Primitives

Broadcast

> Broadcast x, to k realizations xq,...x,_1 or k copy operations
> We construct the broadcast operator, B,_, (1,

Ca—0 Xq
C'a—>1 Xa
Ba—){k}xa = : Xa= | . | =X}
Ca—sk-1 Xq
> And its adjoint,
k—1
Bé_’{k}y{k} = [C;—m a1 C;—ﬂc—l} Yk} = zKiSi—m'.Yi =¥Ya.
i=0

» The adjoint of a broadcast is a sum-reduction

RJH (Virginia Tech) Distributed Deep Learning SLIM Group Seminar 21/35

Linear Algebraic Parallel Primitives

Other Primitives

» Sum-reduce
> adjoint is broadcast
All-to-all/Shuffle/ Transpose

> Block matrix of copy/moves
> adjoint is also transpose (not self-adjoint)

v

> Scatter (special case of Transpose)
> adjoint is gather

> Gather (special case of Transpose)
> adjoint is scatter

\4

All-sum-reduce
> self-adjoint

RJH (Virginia Tech) Distributed Deep Learning SLIM Group Seminar 22/35

Parallel Primitives for High-order Tensors

> We want to generalize these ideas to deep learning (and PDEs too)
> We propose data movement primitives specific to high-order tensors

> Broadcast

> Sum-reduce

> All-to-all / Transpose / Shuffle
» Halo Exchange

> All-(sum)-reduce

RJH (Virginia Tech) Distributed Deep Learning SLIM Group Seminar 23/35

Parallel Primitives for High-order Tensors

Broadcast

» The broadcast primitive holds for more than just standard MPI-style broadcast
> We can express NumPy-style broadcast semantics across tensor dimensions

= — [EEEE =
P, P, n
EEEE >
—> [T <7
EEEE 7
P, P,
P,

RJH (Virginia Tech) Distributed Deep Learning SLIM Group Seminar 24 /35

Parallel Primitives for High-order Tensors

Sum-reduce

» The sum-reduce primitive holds for more than just standard MPI-style reductions

> We can use the reverse of NumPy-style broadcast semantics across tensor dimensions

D —]]
P, P, P,
EEEE D
11| —> <1
EEEE 7
P, P,
PL‘I

SLIM Group Seminar 25 /35

Parallel Primitives for High-order Tensors

Transpose

> All-to-all works slightly differently

> We had to adapt an interpretation of all-to-all to high-order tensors

Wo wy w2 w3

RJH (Virginia Tech) Distributed Deep Learning SLIM Group Seminar 26 /35

Parallel Primitives for High-order Tensors

Transpose

> All-to-all works slightly differently

> We had to adapt an interpretation of all-to-all to high-order tensors

RJH (Virginia Tech) Distributed Deep Learning SLIM Group Seminar 26 /35

Parallel Primitives for High-order Tensors

Transpose

> All-to-all works slightly differently

> We had to adapt an interpretation of all-to-all to high-order tensors

wo w; w2 w3

RJH (Virginia Tech) Distributed Deep Learning SLIM Group Seminar 26 /35

Parallel Primitives for High-order Tensors

Transpose

> All-to-all works slightly differently

> We had to adapt an interpretation of all-to-all to high-order tensors

NN ENN]

Wo

RJH (Virginia Tech) Distributed Deep Learning SLIM Group Seminar 26 /35

Parallel Primitives for High-order Tensors

Transpose

> All-to-all works slightly differently

> We had to adapt an interpretation of all-to-all to high-order tensors

EEEE | —> [

P, P,

RJH (Virginia Tech) Distributed Deep Learning SLIM Group Seminar 26 /35

Parallel Primitives for High-order Tensors

Transpose

> All-to-all works slightly differently

> We had to adapt an interpretation of all-to-all to high-order tensors

EOEC o

| (N (N —— -j-j

[(o] [.|
P, P,

RJH (Virginia Tech) Distributed Deep Learning SLIM Group Seminar 26 /35

Parallel Primitives for High-order Tensors

Transpose

> All-to-all works slightly differently
> We had to adapt an interpretation of all-to-all to high-order tensors

> This is how we get tensor scatters and gathers, too!

P, P, P, P,

RJH (Virginia Tech) Distributed Deep Learning SLIM Group Seminar 26 /35

Parallel Primitives for High-order Tensors

Halo Exchange

Worker 0 Worker 1

RJH (Virginia Tech) Distributed Deep Learning SLIM Group Seminar 27/35

Parallel Primitives for High-order Tensors

Halo Exchange

RJH (Virginia Tech) Distributed Deep Learning SLIM Group Seminar 27/35

Parallel Primitives for High-order Tensors

Halo Exchange

Chy—ha Chy—hs
Cho—ho Chyshy
N\ \

RJH (Virginia Tech) Distributed Deep Learning SLIM Group Seminar 27/35

Parallel Primitives for High-order Tensors

Halo Exchange

Cho—ha

2}

RJH (Virginia Tech) Distributed Deep Learning SLIM Group Seminar 27/35

Parallel Primitives for High-order Tensors

Halo Exchange

RJH (Vlrglnla Tech) Distributed Deep Learning SLlM Group Seminar 27/35

Parallel Primitives for High-order Tensors

Halo Exchange
(w/ Thomas Grady)

P> Halo exchange is not a standard parallel primitive
> We generally impose that the output tensor is computationally load balanced

> In general, even if input is load balanced, output is not guaranteed to be load balanced
» Required for sliding-window kernels on distributed tensors

» These kernels do not have regular size, as they would in, e.g., standard finite-differences

> Also required for, e.g., interpolation / upsampling

RJH (Virginia Tech) Distributed Deep Learning SLIM Group Seminar 28/35

Parallel Primitives for High-order Tensors

Halo Exchange

Worker 0 Worker 1 Worker 2
Input: {——[0[1]2[3[4{5; 2:3[4[5[6]7[879! i6i7[8[9M0—-i~!
YyYVYVYY YVYVYY YyVvYy
Output: 011(2[3 41516]|7 819110

This situation yields the “normal”, uniform halo sizes.
» Centered convolution kernel, size k = 5
» 1D input tensor, size n = 11
» 1D partition, size P =3
> Zero-padding of width 2, implicitly on input boundaries

RJH (Virginia Tech) Distributed Deep Learning SLIM Group Seminar 28/35

Parallel Primitives for High-order Tensors

Halo Exchange

Worker 0 Worker 1 Worker 2

Input: [0[1]2[3[4/56; [3[4[5[6[7[8! {56 78[9[i0

YVYY YY YY
Output: 21314 516 8

This situation yields unbalanced halo sizes.

» Centered convolution kernel, size k =5
» 1D input tensor, size n = 11
» 1D partition, size P =3

» No implicit zero-padding on input boundaries

RJH (Virginia Tech) Distributed Deep Learning SLIM Group Seminar 28/35

Parallel Primitives for High-order Tensors

Halo Exchange

Worker 0 Worker 1 Worker 2
Input: [0J1]2]3] [4I5[6]7' [7I8]9]

Output: 0[2] (416
This situation yields “simple” unbalanced halo sizes.
» Right-looking pooling kernel, size k = 2, stride s = 2
» 1D input tensor, size n = 10
» 1D partition, size P =3
> No implicit zero-padding or dilation

RJH (Virginia Tech) Distributed Deep Learning SLIM Group Seminar 28/35

Parallel Primitives for High-order Tensors

Halo Exchange

Worker 0 Worker 1~ Worker 2 Worker 3 Worker 4 Worker 5
Input: [0[1]2]3] [4]5][6]7] [8]9Jiofi1r [iif1213[1415 [14)15]16[17 [17]18]19]

& &
Output: [0]2] [4]6] 8]10

This situation yields “complicated” unbalanced halo sizes.

> Right-looking pooling kernel, size k = 2, stride s = 2
» 1D input tensor, size n = 20
» 1D partition, size P =6

» No implicit zero-padding or dilation

RJH (Virginia Tech) Distributed Deep Learning SLIM Group Seminar 28/35

Parallel Primitives for High-order Tensors

Halo Exchange

> Halo exchange is not a standard parallel primitive

> We construct a halo exchange from a series of clear and copy operations,

H = K+CyCgCpKs,

K the setup operator to clear exchange buffers

Cp the pack operator to copy bulk region to send buffer

CE the exchange operator to copy from workers’ send buffers to neighboring workers’ receive buffers
Cly the unpack operator to copy from receive buffer to halo region

Kt the teardown operator to clear exchange buffers

vyvyvVyYVYyYy

RJH (Virginia Tech) Distributed Deep Learning SLIM Group Seminar 29/35

Parallel Primitives for High-order Tensors

Halo Exchange
» D-dimensional partitioned tensors require one halo exchange for each dimension
H=Kr, ,Cu, ,Ce, ,Cp, ,Ks, , ... K1,Cy,Cg, Cp, Ks, K71,Cy,Ce, Cp, Ks,

» This handles all corner cases

» The adjoint thus requires summation into the bulk region from the halo regions
* * * * * * * * * * * * * * * *
H = KSOCPOCEOCUOKTOKSICPICEl CUIKTI ce stfldeflcEdflcUd—lKTdfl'

> We see this most easily from the linear algebraic definitions: each of the adjoint copies is
an add-clear

RJH (Virginia Tech) Distributed Deep Learning SLIM Group Seminar 29/35

Parallel Primitives for High-order Tensors

Adjoint Halo Exchange

RJH (Virginia Tech) Distributed Deep Learning SLIM Group Seminar 30/35

Parallel Primitives for High-order Tensors

Adjoint Halo Exchange

Kh, Shy—b,

LN

MK, Sh, -,

N\

N—

RJH (Virginia Tech)

1

Distributed Deep Learning

SLIM Group Seminar 30/35

Parallel Primitives for High-order Tensors

Adjoint Halo Exchange

RJH (Virginia Tech) Distributed Deep Learning SLIM Group Seminar 30/35

Parallel Primitives for High-order Tensors

Adjoint Halo Exchange

feneesy | [aawd

RJH (Virginia Tech) Distributed Deep Learning SLIM Group Seminar 30/35

Parallel Primitives for High-order Tensors

Adjoint Halo Exchange

RJH (Virginia Tech) Distributed Deep Learning SLIM Group Seminar 30/35

Distributed DNN Layers

> We can compose distributed DNN Layers using linear operator forms of parallel primitives
> Right now we support the basic building blocks:

» Distributed Convolutional layers
> Distributed Pooling layers

> Distributed Linear/Affine layers
» Distributed Batchnorm layers
> Distributed Upsampling layers

» Support for other functions will be added as needed

> Element-wise layers (e.g., ReLU) do not require data movement

RJH (Virginia Tech) Distributed Deep Learning SLIM Group Seminar 31/35

Distributed DNN Layers

A simple distributed convolutional layer:

y; = SequentialConv(HaloExchange(x;); Broadcast(w),Broadcast(b))

RJH (Virginia Tech) Distributed Deep Learning SLIM Group Seminar 32/35

Distributed DNN Layers

A simple distributed convolutional layer:

y; = SequentialConv(HaloExchange(x;); Broadcast(w),Broadcast(b))

Forward Convolution Algorithm Adjoint Convolution Algorithm
1: Input: x 1: Input:A(Sy
2: X+ Hx 2: W, db, 0% < [dConv]* (dy)
3: \ZV — B{pT}_){pz}W 3: db R{pz}_%{Pr}(SB
4 b+ B{Pr}%{Pz}b 4: OW R{Pﬁ}%{Pr}éw
5. y < Conv (W, b; %) 5: 0x < H0%
6: Output: y 6: Output: dx

RJH (Virginia Tech) Distributed Deep Learning SLIM Group Seminar 32/35

Distributed Deep Networks

2

" P e—— 7 7 [flatten |
| _pad |—>{halo exch broadcast] conv. [Unpad] I
distributed conv. I Transpose |
1 relu |
X x
L| Broadcast | e) [somreduce}”

distributed affine

l'—|X broadcast | X 1_affine |} L

distributed affine

distributed pool

X X
|

7 N

P ———
|*1|EHM| Brozccest]+[_conv_]--[unpad]”
distributed conv

[el | Fell]
x x x y
| _pad | [halo exchl [__pool | | unpad | X X
| halo exchi—— £ L| Broadcast | e) [somreduce}”
distributed pool T |
distributed affine

[transpose |

| sigmoid |

P,=P,=1x1x2x2 x =
Py 1x1x1x1 I—

3 Py

RJH (Virginia Tech) Distributed Deep Learning SLIM Group Seminar 33/35

Distributed Deep Networks

2

" P e—— 7 7 [flatten |
| _pad |—>{halo exch broadcast] conv. [Unpad] I
distributed conv. I Transpose |
1 relu |
X x
L| Broadcast | e) [somreduce}”

distributed affine

l'—|X broadcast | X 1_affine |} L

distributed affine

distributed pool

X X
|

7 N

P ———
|*1|EHM| Brozccest]+[_conv_]--[unpad]”
distributed conv

[el | Fell]
x x x y
| _pad | [halo exchl [__pool | | unpad | X X
| halo exchi—— £ L| Broadcast | e) [somreduce}”
distributed pool T |
distributed affine

[transpose |

| sigmoid |

P,=P,=1x1x2x2 x =
Py 1x1x1x1 I—

3 Py

RJH (Virginia Tech) Distributed Deep Learning SLIM Group Seminar 34 /35

DistDL: Distributed Deep Learning

P DistDL: Distributed Deep Learning

» PyTorch + MPI based tool

> https://github.com/distdl/distdl

> https://distdl.readthedocs.io/en/latest/
> Absolutely a work in progress. . .

DistDL
> Paper: https://arxiv.org/abs/2006.03108 e
> RJH, Thomas Grady

Wt HetH B

inter

RJH (Virginia Tech) Distributed Deep Learning SLIM Group Seminar 35/35

https://github.com/distdl/distdl
https://distdl.readthedocs.io/en/latest/

DistDL: Distributed Deep Learning

P DistDL: Distributed Deep Learning
» PyTorch + MPI based tool
> https://github.com/distdl/distdl
> https://distdl.readthedocs.io/en/latest/
> Absolutely a work in progress. . .
> Paper: https://arxiv.org/abs/2006.03108
» RJH, Thomas Grady

Model Parallelism
for PyTorch

Input 07 e &

e [] N N O

Output D:D:I:E @ @ D:D I:EE
Sequential Distributed

RJH (Virginia Tech) Distributed Deep Learning SLIM Group Seminar 35/35

https://github.com/distdl/distdl
https://distdl.readthedocs.io/en/latest/

DistDL: Distributed Deep Learning

» DistDL: Distributed Deep Learning

» PyTorch + MPI based tool

> https://github.com/distdl/distdl

> https://distdl.readthedocs.io/en/latest/
> Absolutely a work in progress. . .

> Paper: https://arxiv.org/abs/2006.03108
» RJH, Thomas Grady

Model Parallelism
for PyTorch

Others involved:
» Daniel Hagialigol (current CMDA student)
» Thomas Grady (recent CMDA & Math graduate)
> Jacob Merizian (recent Math & CS graduate)
» Ananiya Admasu, Mason Beahr, & Sarah Kauffman (CMDA Capstone Team)

RJH (Virginia Tech) Distributed Deep Learning SLIM Group Seminar 35/35

https://github.com/distdl/distdl
https://distdl.readthedocs.io/en/latest/

DistDL: Distributed Deep Learning

P DistDL: Distributed Deep Learning
» PyTorch + MPI based tool
> https://github.com/distdl/distdl
> https://distdl.readthedocs.io/en/latest/
> Absolutely a work in progress. . .
> Paper: https://arxiv.org/abs/2006.03108
» RJH, Thomas Grady

Model Parallelism
for PyTorch

Thank you! Question time!

RJH (Virginia Tech) Distributed Deep Learning SLIM Group Seminar 35/35

https://github.com/distdl/distdl
https://distdl.readthedocs.io/en/latest/

