Evolution of a Scalable 3D Helmholtz Solver with Geophysical Applications

Russell J. Hewett Mathematics & CMDA, Virginia Tech

UMD Numerical Analysis Seminar

December 03, 2019

- ► Leonardo Zepeda-Nuñez, University of Wisconsin
- ▶ Matthias Taus, TU Wien
- Laurent Demanet, MIT
- ► Adrien Scheuer, Universitè Catholique de Louvain

Full Waveform Inversion

RJH (Virginia Tech

seismic source + receivers \rightarrow data	d
Earth's physical parameters	m
model physics (wave propagation)	$\mathcal{F}(m)$
full waveform inversion	$\min J(m) = \frac{1}{2} d - \mathcal{F}(m) _2^2$
gradient optimization	$m^{(k+1)} = m^{(k)} + f(\nabla J[m^{(k)}])$

Full Waveform Inversion: Data

5 / 47

Full Waveform Inversion: Earth Models

Marmousi 2 Velocity

BP 2004 Velocity

Full Waveform Inversion: Earth Models

SEAM Phase I Velocity (Fehler; SEG)

Polarized Traces & L-Sweeps

PDE constrained optimization in frequency domain

• $\min J(m) = \frac{1}{2} ||d - \mathcal{F}(m)||_2^2$ s.t. Lu = f

Advantages:

No need to invert source time series

$$\hat{f}(\omega) = \mathsf{DFT}(f(t))$$

Only need specific frequency components

PDE constrained optimization in frequency domain

• $\min J(m) = \frac{1}{2} ||d - \mathcal{F}(m)||_2^2$ s.t. Lu = f

Advantages:

Reduced memory and disk requirements in inverse problem

$$\delta m = -\langle q, \partial_{tt} u_0 \rangle_T = -\int_0^T q(x, t) \partial_{tt} u_0(x, t) dt$$

becomes

$$\delta m = -\left\langle q, -\omega^2 u_0 \right\rangle_{\Omega} = -\sum_{\omega} \hat{q}(x,\omega) - \omega^2 \hat{u}_0(x,\omega)$$

PDE constrained optimization in frequency domain

• $\min J(m) = \frac{1}{2} ||d - \mathcal{F}(m)||_2^2$ s.t. Lu = f

Advantages:

- Multiple simultaneous right-hand sides
- ▶ With a factorization based method, only need to solve Helmholtz operator once per domain
- ► Compare to explicit time-stepping: "matvec" required for each time step for each source

PDE constrained optimization in frequency domain

• $\min J(m) = \frac{1}{2} ||d - \mathcal{F}(m)||_2^2$ s.t. Lu = f

Advantages:

 \blacktriangleright Heirarchichal frequency "sweeping" \Rightarrow Convergence guarantees

(E. Beretta, M.V. de Hoop, F. Faucher, O. Scherzer (SIMA 2016))

RJH (Virginia Tech)

Challenges for Frequency Domain Inversion ... it's all in the foward problem:

- Helmholtz in high frequency regime
- Helmholtz in 3D at high resolution
- Scalable Helmholtz in HPC environment

Take-home from this talk:

- ▶ With the right mix of tools, addressing all three is tractible
- Still need fast, parallelizable dense linear algebra
- ► Sub-linear complexity is achieved in parallel environments

Helmholtz at high frequency is hard

$$Hu = (-\omega^2 - \triangle)u = f + ABCs$$

- \blacktriangleright Frequency ω grows with n
- \blacktriangleright Computational load N scales with n^d

Helmholtz at high frequency is hard

$$Hu = (-\omega^2 - \triangle)u = f + ABCs$$

- \blacktriangleright Frequency ω grows with n
- \blacktriangleright Computational load N scales with n^d

Classical dense direct methods in 3D

- memory-intensive
- hard to parallelize

Helmholtz at high frequency is hard

$$Hu = (-\omega^2 - \triangle)u = f + ABCs$$

- \blacktriangleright Frequency ω grows with n
- Computational load N scales with n^d

Classical dense direct methods in 3D

- memory-intensive
- hard to parallelize

Multigrid methods

- poor frequency scaling
- down-sampling oscillatory waves is hard

Helmholtz at high frequency is hard

$$Hu = (-\omega^2 - \triangle)u = f + ABCs$$

- \blacktriangleright Frequency ω grows with n
- Computational load N scales with n^d

Classical dense direct methods in 3D

- memory-intensive
- hard to parallelize

Multigrid methods

- poor frequency scaling
- down-sampling oscillatory waves is hard

Classical iterative schemes

• n_{iter} grows with ω

Sweeping Solvers and Domain Decomposition Methods

Sweeping Solvers/Preconditioners

- First O(N) claim (Engquist and Ying, 2010)
- ▶ First O(N) claim w/ domain decomposition (Stolk 2013)

Sweeping Solvers and Domain Decomposition Methods

Sweeping Solvers/Preconditioners

- First O(N) claim (Engquist and Ying, 2010)
- First O(N) claim w/ domain decomposition (Stolk 2013)

Other domain-decomposition methods (DDMs):

- Multifrontal w/ HSS compression (Xia, et al., 2013)
- ▶ Hierarchical Poincare-Steklov methods (Gillman, et al., 2014)
- Common challenges:
 - Hazy scalability
 - Issues with rough media

Sweeping Solvers/Preconditioners

- First O(N) claim (Engquist and Ying, 2010)
- ▶ First O(N) claim w/ domain decomposition (Stolk 2013)

Other domain-decomposition methods (DDMs):

- ▶ Multifrontal w/ HSS compression (Xia, et al., 2013)
- ▶ Hierarchical Poincare-Steklov methods (Gillman, et al., 2014)
- Common challenges:
 - Hazy scalability
 - Issues with rough media

Our approach: DDMs + sweeping w/ polarized traces

- Use direct methods distributed over tractable subproblems
- Glue with boundary integral formulations
- Embedded within iterative scheme

RJH (Virginia Tech)

Polarized Traces & L-Sweeps

RJH (Virginia Tech)

Polarized Traces & L-Sweeps

Polarization condition:

$$\begin{split} 0 &= -\int_{\Gamma} G(x,y)\partial_{n_y} u^{\uparrow}(y) ds_y \\ &+ \int_{\Gamma} \partial_{n_y} G(x,y) u^{\uparrow}(y) ds_y \end{split}$$

RJH (Virginia Tech)

Polarized Traces & L-Sweeps

RJH (Virginia Tech)

RJH (Virginia Tech)

Polarized Traces & L-Sweeps

RJH (Virginia Tech)

Polarized Traces & L-Sweeps

Sweeping Algorithm

Zepeda-Nuñez, RJH, & Demanet, SEG, 2014

Zepeda-Nuñez & Demanet, JCP, 2016

RJH (Virginia Tech

Polarized Traces & L-Sweeps

Polarized Traces & A Sequential Bottleneck

- Assume local PDE is solved in the bulk Traces can be found by solving $\underline{\mathbf{M}} \ \underline{\mathbf{u}} = \underline{\mathbf{f}} = \begin{bmatrix} \mathbf{v}_n^1 \\ \mathbf{v}_1^2 \\ \mathbf{v}_n^2 \\ \vdots \\ \mathbf{v}_1^L \end{bmatrix}$
- M is constructed from dense Green's function blocks...but is non-trivial to invert ►

Polarized Traces & A Sequential Bottleneck

- Annihilation relation:
 - \blacktriangleright If \mathbf{u}^{\uparrow} is an up-going wavefield, then the annihilator relations are true on the lower-half plane, i.e.

$$\mathcal{G}_i^{\downarrow,\ell}(\mathbf{u}_-^\uparrow,\mathbf{u}_1^\uparrow)=0,\qquad \text{for }i\geq 1.$$

 \blacktriangleright If \mathbf{u}^{\downarrow} is a down-going wavefield, then the annihilator relations are true on the upper-half plane, i.e.

$$\mathcal{G}_i^{\uparrow,\ell}(\mathbf{u}_n^{\downarrow},\mathbf{u}_+^{\downarrow}) = 0, \qquad ext{for } i \leq n^\ell$$

Polarized Traces & A Sequential Bottleneck

1. Seek to solve $\underline{\mathbf{M}} \, \underline{\mathbf{u}} = \underline{\mathbf{f}}$
1. Seek to solve $\underline{\mathbf{M}}\,\underline{\mathbf{u}}=\underline{\mathbf{f}}$

2. Transform to underdetermined system

$$\begin{bmatrix} \mathbf{M} & \mathbf{M} \end{bmatrix} \begin{bmatrix} \mathbf{u}^{\downarrow} \\ \mathbf{u}^{\uparrow} \end{bmatrix} = -\mathbf{\underline{f}}$$

1. Seek to solve $\underline{\mathbf{M}}\, \underline{\mathbf{u}} = \underline{\mathbf{f}}$

2. Transform to underdetermined system

$$\begin{bmatrix} \mathbf{\underline{M}} & \mathbf{\underline{M}} \end{bmatrix} \begin{bmatrix} \mathbf{\underline{u}}^{\downarrow} \\ \mathbf{\underline{u}}^{\uparrow} \end{bmatrix} = -\mathbf{\underline{f}}$$

3. Constrain with annihilation relations

$$\left[\begin{array}{cc} \underline{\mathbf{M}} & \underline{\mathbf{M}} \\ \underline{\mathbf{A}}^{\downarrow} & \underline{\mathbf{A}}^{\uparrow} \end{array}\right] \left[\begin{array}{c} \underline{\mathbf{u}}^{\downarrow} \\ \underline{\mathbf{u}}^{\uparrow} \end{array}\right] = - \left[\begin{array}{c} \underline{\mathbf{f}} \\ \underline{\mathbf{0}} \end{array}\right]$$

1. Seek to solve $\underline{\mathbf{M}}\, \underline{\mathbf{u}} = \underline{\mathbf{f}}$

2. Transform to underdetermined system

$$\begin{bmatrix} \mathbf{\underline{M}} & \mathbf{\underline{M}} \end{bmatrix} \begin{bmatrix} \mathbf{\underline{u}}^{\downarrow} \\ \mathbf{\underline{u}}^{\uparrow} \end{bmatrix} = -\mathbf{\underline{f}}$$

3. Constrain with annihilation relations

$$\left[\begin{array}{cc}\underline{\mathbf{M}} & \underline{\mathbf{M}} \\ \underline{\mathbf{A}}^{\downarrow} & \underline{\mathbf{A}}^{\uparrow}\end{array}\right] \left[\begin{array}{c}\underline{\mathbf{u}}^{\downarrow} \\ \underline{\mathbf{u}}^{\uparrow}\end{array}\right] = -\left[\begin{array}{c}\underline{\mathbf{f}} \\ \underline{\mathbf{0}}\end{array}\right]$$

4. Additional minor transformations and permutations

$$\begin{bmatrix} \underline{\mathbf{D}}^{\downarrow} & \underline{\mathbf{U}} \\ \underline{\mathbf{L}} & \underline{\mathbf{D}}^{\uparrow} \end{bmatrix} \underline{\underline{\mathbf{u}}} = \underline{\underline{\mathbf{f}}}$$

1. Seek to solve $\underline{\mathbf{M}}\,\underline{\mathbf{u}}=\underline{\mathbf{f}}$

2. Transform to underdetermined system

$$\begin{bmatrix} \mathbf{\underline{M}} & \mathbf{\underline{M}} \end{bmatrix} \begin{bmatrix} \mathbf{\underline{u}}^{\downarrow} \\ \mathbf{\underline{u}}^{\uparrow} \end{bmatrix} = -\mathbf{\underline{f}}$$

3. Constrain with annihilation relations

$$\left[\begin{array}{cc}\underline{\mathbf{M}} & \underline{\mathbf{M}} \\ \underline{\mathbf{A}}^{\downarrow} & \underline{\mathbf{A}}^{\uparrow}\end{array}\right] \left[\begin{array}{c}\underline{\mathbf{u}}^{\downarrow} \\ \underline{\mathbf{u}}^{\uparrow}\end{array}\right] = -\left[\begin{array}{c}\underline{\mathbf{f}} \\ \underline{\mathbf{0}}\end{array}\right]$$

4. Additional minor transformations and permutations

$$\begin{bmatrix} \underline{\mathbf{D}}^{\downarrow} & \underline{\mathbf{U}} \\ \underline{\mathbf{L}} & \underline{\mathbf{D}}^{\uparrow} \end{bmatrix} \underline{\underline{\mathbf{u}}} = \underline{\underline{\mathbf{f}}}$$

5. Final system of equations

$$\underline{\underline{\mathbf{M}}} \underline{\underline{\mathbf{u}}} = \underline{\underline{\mathbf{f}}}$$

RJH (Virginia Tech)

$\blacktriangleright\ \ldots\underline{\mathbf{M}}$ is far easier to invert

RJH (Virginia Tech

$$\blacktriangleright \underline{\mathbf{M}} = \left[\begin{array}{cc} \underline{\mathbf{D}}^{\downarrow} & \mathbf{0} \\ \mathbf{0} & \underline{\mathbf{D}}^{\uparrow} \end{array} \right] + \left[\begin{array}{cc} \mathbf{0} & \underline{\mathbf{U}} \\ \underline{\mathbf{L}} & \mathbf{0} \end{array} \right]$$

- Block diagonal, and block upper and lower triangular
 - Perfect for block Gauss-Seidel
- Embed Gauss-Seidel iteration into GMRES to achieve convergence independent of number of layers

BP 2004 2D solution

Iteration 0

BP 2004 2D solution

Iteration 1 (2 domain sweeps)

BP 2004 2D solution

Iteration 2 (4 domain sweeps)

The State of Method So Far

- \blacktriangleright Explicit representation of $\underline{\mathbf{M}}$
- Matrix blocks are concrete representations of the Green's function
- Green's function blocks are compressed using PLR format
- Green's functions can be computed off-line, in parallel
- Gauss-Seidel sweep is inherently sequential
- Sequential nature corresponds directly to the physics

Challenges in Moving to 3D

- Green's function blocks: n (in 2D) vs n^2 (in 3D)
- Explicit computation is impractical at scale
- ▶ PLR does not work as well for 2D Green's functions
- Sequential portion is still sequential
- Solution: Don't compute Green's functions. Solve local systems.
- Problem: Local systems are still computationally difficult.

Can We Apply Polarized Traces Recursively?

- Solution: Use polarized traces to solve local systems.
- Problem: Same major sequential bottleneck.

Zepeda-Nuñez & Demanet, SISC, 2018

Domain

Zepeda-Nuñez, RJH, Demanet, & Scheuer, SEG, 2016

Zepeda-Nuñez, Scheuer, RJH, & Demanet, Geophysics, 2019

RJH (Virginia Tech

Polarized Traces & L-Sweeps

Sources of Parallelism: Layers

MPI: Parallelize over Layers

Zepeda-Nuñez, RJH, Demanet, & Scheuer, SEG, 2016 Zepeda-Nuñez, Scheuer, RJH, & Demanet, Geophysics, 2019

RJH (Virginia Tech)

Polarized Traces & L-Sweeps

UMD NA Seminar / 2019-12-03 24 / 47

Zepeda-Nuñez, RJH, Demanet, & Scheuer, SEG, 2016

Zepeda-Nuñez, Scheuer, RJH, & Demanet, Geophysics, 2019

RJH (Virginia Tech)

Polarized Traces & L-Sweeps

UMD NA Seminar / 2019-12-03 24 / 47

MPI: Multifrontal/Nested dissection

Zepeda-Nuñez, RJH, Demanet, & Scheuer, SEG, 2016

Zepeda-Nuñez, Scheuer, RJH, & Demanet, Geophysics, 2019

OpenMP: Parallelize within MPI tasks

Zepeda-Nuñez, RJH, Demanet, & Scheuer, SEG, 2016

Zepeda-Nuñez, Scheuer, RJH, & Demanet, Geophysics, 2019

Pipelining: Parallelizing the Sequential Part

Pipelining: Parallelizing the Sequential Part

Homogeneous Problem

Polarized Traces & L-Sweeps

N	50^{3}	100^{3}	100^{3}	200^{3}	200^{3}	400^{3}	400^{3}	400^{3}
L	5	10	10	20	20	40	40	40
MPI Tasks	5	10	10	80	80	640	640	640
OMP Threads/Task	1	1	2	1	2	1	2	3
Total Cores	5	10	20	80	160	640	1280	1920
Total Nodes	1	1	2	5	10	80	80	128
Single rhs								
# GMRES Iterations	4	4	4	5	5	6	6	6
Initialization [s]	0.2	1.0	0.9	6.9	4.4	18.9	18.9	18.4
Factorization [s]	4.1	41.1	21.9	153.2	78.3	320.5	200.1	148.6
Online [s]	4.0	39.2	22.6	182.0	109.7	696.6	401.4	315.5
Avg. GMRES [s]	0.9	8.4	4.8	32.0	19.2	103.5	59.3	46.6
Pipelined rhs								
R (number of rhs)	5	10	10	20	20	40	40	40
Online [s]	15.8	189.4	106.2	1255.5	668.5	3994.2	2654.4	1878.1
Avg. GMRES [s]	3.4	40.6	22.7	223.8	118.6	599.9	401.0	283.0
Online/rhs [s]	3.2	18.9	10.6	62.8	33.4	99.9	66.4	47.0
Avg. GMRES/rhs [s]	0.7	4.1	2.3	11.2	5.9	15.0	10.0	7.1

Homogeneous Problem

RJH (Virginia Tech)

Smooth Heterogeneous Problem

Polarized Traces & L-Sweeps

N	50^{3}	100^{3}	100^{3}	200^{3}	200^{3}	400^{3}	400^{3}	400^{3}
L	5	10	10	20	20	40	40	40
MPI Tasks	5	10	10	80	80	640	640	640
OMP Threads/Task	1	1	2	1	2	1	2	3
Total Cores	5	10	20	80	160	640	1280	1920
Total Nodes	1	1	2	5	10	80	80	128
Single rhs								
# GMRES Iterations	5	5	5	5	5	6	6	6
Initialization [s]	0.2	1.1	1.0	7.3	4.6	21.3	21.2	20.8
Factorization [s]	3.8	41.1	21.8	156.0	79.4	323.7	204.5	151.5
Online [s]	4.6	45.9	26.1	202.2	106.9	717.0	400.1	314.5
Avg GMRES [s]	0.8	8.1	4.6	35.5	18.7	106.4	59.2	46.5
Pipelined rhs								
R (number of rhs)	5	10	10	20	20	40	40	40
Online [s]	17.1	225.1	118.8	1260.9	650.2	4085.0	2714.8	1872.1
Avg GMRES [s]	3.0	39.8	20.9	223.6	115.6	613.3	409.2	281.9
Online/rhs [s]	3.4	22.5	11.9	63.0	32.5	102.1	67.9	46.8
Avg GMRES/rhs [s]	0.6	4.0	2.1	11.2	5.8	15.3	10.2	7.0

Smooth Heterogeneous Problem

RJH (Virginia Tech)

Fault Problem

RJH (Virginia Tech)

Polarized Traces & L-Sweeps

N	50^{3}	100^{3}	100^{3}	200^{3}	200^{3}	400^{3}	400^{3}	400^{3}
L	5	10	10	20	20	40	40	40
MPI Tasks	5	10	10	80	80	640	640	640
OMP Threads/Task	1	1	2	1	2	1	2	3
Total Cores	5	10	20	80	160	640	1280	1920
Total Nodes	1	1	2	5	10	80	80	128
Single rhs								
# GMRES Iterations	4	5	5	5	5	6	6	6
Initialization [s]	0.4	1.1	1.0	7.3	4.7	20.4	20.3	21.0
Factorization [s]	3.8	40.4	22.1	152.2	79.9	317.6	199.5	152.5
Online [s]	3.7	46.2	26.2	188.5	109.8	713.2	395.8	315.6
Avg GMRES [s]	0.8	8.1	4.6	33.0	19.2	106.2	58.7	46.5
Pipelined rhs								
R (number of rhs)	5	10	10	20	20	40	40	40
Online [s]	13.7	226.7	122.4	1222.7	647.1	4031.6	2710.6	1838.9
Avg GMRES [s]	2.9	40.1	21.6	216.5	114.7	605.0	409.9	276.3
Online/rhs [s]	2.7	22.7	12.2	61.1	32.4	100.8	67.7	46.0
Avg GMRES/rhs [s]	0.6	4.0	2.2	10.8	5.7	15.1	10.2	6.9

Fault Problem

RJH (Virginia Tech

29 / 47

SEAM Problem

N	$6.51 \cdot 10^{5}$	$5.16\cdot 10^6$	$4.12\cdot 10^7$	$4.12\cdot 10^7$
L	12	24	48	48
MPI Tasks	12	48	384	384
OpenMP Threads per Task	1	2	2	3
Total Cores	12	96	768	1152
Total Nodes	1	6	77	77
Single rhs				
# GMRES Iterations	4	5	6	6
Initialization [s]	0.6	2.3	10.4	10.7
Factorization [s]	15.2	46.5	111.4	97.9
Online [s]	21.4	85.6	269.8	228.4
Average GMRES [s]	4.6	14.9	40.0	33.7
Pipelined rhs				
R (number of rhs)	12	24	48	48
Online [s]	106.3	474.8	1527.1	1415.4
Average GMRES [s]	22.8	83.9	229.4	212.9
Online per rhs [s]	8.8	19.8	31.8	29.5
Average GMRES per rhs [s]	1.9	3.5	4.8	4.4

SEAM Problem

RJH (Virginia Tech)

31 / 47

31 / 47

Pipelined Parallel Run-time complexity: $\mathcal{O}(\max(1, R/L)N \log N)$

Question: Can we better parallelize this preconditioner?

Problem: Serial nature of the sweeps

Problem: 2D memory growth due to planar slabs

Problem: Interface "communication" volume

Polarization condition:

$$\begin{split} 0 &= -\int_{\Gamma} G(x,y) \partial_{n_y} u^{\uparrow}(y) ds_y \\ &+ \int_{\Gamma} \partial_{n_y} G(x,y) u^{\uparrow}(y) ds_y \end{split}$$

RJH (Virginia Tech)

Polarized Traces & L-Sweeps

UMD NA Seminar / 2019-12-03 34 / 47

RJH (Virginia Tech)

Polarized Traces & L-Sweeps

UMD NA Seminar / 2019-12-03 34 / 47

RJH (Virginia Tech)
Solution: L-sweeps

RJH (Virginia Tech)

Polarized Traces & L-Sweeps

UMD NA Seminar / 2019-12-03 34 / 47

Solution: L-sweeps

RJH (Virginia Tech)

Polarized Traces & L-Sweeps

UMD NA Seminar / 2019-12-03 34 / 47

Each propagation onto the next diagonal can is embarrassingly parallel on a cell-wise level!

M O V I E! :)

Each propagation onto the next diagonal can is embarrassingly parallel on a cell-wise level!

 $\Rightarrow O(N/p) \underset{(\text{as long as } p = O(N^{1/d}))}{\text{complexity}}$

N	$\omega/2\pi$	p	$T_{\texttt{fact}}$	$N_{\texttt{it}}$	$T_{\texttt{it}}$	$T_{\texttt{total}}$
202×202	20.1	2	1.09	2	0.66	2.63
404×404	40.3	4	1.00	3	0.58	2.56
808 imes 808	80.7	8	1.41	3	1.26	6.02
1616×1616	161.5	16	2.80	2	3.39	14.05
3232 imes 3232	323.1	32	4.41	3	5.47	27.47
6464×6464	646.3	64	8.34	4	11.09	67.74
12928×12928	1292.7	128	15.66	5	22.39	160.88

Numerical Example: Homogeneous Velocity

RJH (Virginia Tech)

(without PML)	$\omega/2\pi$	q = r	BG1	BG2	with salt	with salt	model
202×202	20.1	2	1	4	7	6	7
404×404	40.3	4	2	4	9	9	9
808×808	80.7	8	4	6	12	12	12
1616×1616	161.4	16	5	6	15	15	15
3232×3232	323.1	32	6	7	17	17	16
6464×6464	646.3	64	7	7	19	19	19
12928×12928	1292.7	128	8	8	21	21	20

RJH (Virginia Tech)

Polarized Traces & L-Sweeps

- max. 16 wavelengths in domain
- PML width:
 1.25 wavelengths
- ► 2 × 2 domain decomposition

Polarized Traces & L-Sweeps

- max. 32 wavelengths in domain
- PML width:
 1.5 wavelengths
- 4×4 domain decomposition

- max. 64 wavelengths in domain
- PML width:
 1.75 wavelengths
- ► 8 × 8 domain decomposition

- max. 128
 wavelengths in domain
- PML width:2 wavelengths
- ► 16 × 16 domain decomposition

- max. 256 wavelengths in domain
- PML width:2.25 wavelengths
- ► 32 × 32 domain decomposition

- max. 512 wavelengths in domain
- PML width:2.5 wavelengths
- ▶ 64 × 64 domain decomposition

RJH (Virginia Tech)

Polarized Traces & L-Sweeps

Numerical Example: High-contrast Waveguide

RJH (Virginia Tech

Polarized Traces & L-Sweeps

UMD NA Seminar / 2019-12-03 41 / 47

Numerical Example: High-contrast Waveguide

N			Contrast ratio					
(without PML)	$\omega/2\pi$	m = n	2	3	4	5	6	
202×202	20.1	2	18	24	24	25	26	
404×404	40.3	4	28	29	29	28	30	
808 imes 808	80.7	8	30	32	34	33	33	
1616×1616	161.5	16	31	33	33	34	35	
3232×3232	323.1	32	32	34	36	36	37	
6464×6464	646.3	64	32	34	35	36	36	

Numerical Example: High-contrast Waveguide

RJH (Virginia Tech)

Polarized Traces & L-Sweeps

- ▶ There are serious challenges in optimizing parallelism in 3D
- Current implementation uses vertically extruded subdomains
- Consider it a quasi-2D domain decomposition

Numerical Example: Homogeneous Velocity (3D)

N						
(without PML)	$\omega/2\pi$	p	$T_{\texttt{fact}}$	$N_{\texttt{it}}$	$T_{\texttt{it}}$	$T_{\texttt{total}}$
$26\times26\times26$	4.17	2	.04	4	1.34	6.52
$52 \times 52 \times 52$	8.50	4	5.54	6	5.30	37.17
78 imes 78 imes 78	12.83	6	12.42	6	12.80	89.76
$104\times104\times104$	17.17	8	22.91	6	23.27	163.62
$130\times130\times130$	21.50	10	37.53	7	36.47	292.33
$156\times156\times156$	25.83	12	52.47	7	51.62	417.08
$182\times182\times182$	30.17	14	71.71	8	68.92	627.23
$208\times208\times208$	34.50	16	96.14	7	91.65	743.37
$234\times234\times234$	38.83	18	124.64	8	116.08	1050.31
$260\times260\times260$	43.17	20	211.87	7	177.21	1438.12
$312\times312\times312$	51.83	24	314.93	8	263.16	2457.40
$416\times416\times416$	69.17	32	418.36	9	377.60	3992.63

Numerical Example: Homogeneous Velocity (3D)

RJH (Virginia Tech)

Successful construction of a scalably parallelizable preconditioner for the high-frequency Helmholtz equation.

- ▶ O(N/p) complexity as long as $p = O(N^{1/d})$
- Independent of the discretization
- Applicable to heterogeneous media
- Paper: https://arxiv.org/abs/1909.01467

Successful construction of a scalably parallelizable preconditioner for the high-frequency Helmholtz equation.

- $\blacktriangleright \ O(N/p)$ complexity as long as $p = O(N^{1/d})$
- Independent of the discretization
- Applicable to heterogeneous media
- Paper: https://arxiv.org/abs/1909.01467

Next steps:

- ▶ O(N/p)-scaling in 3D where $p = O(N^{2/3})$
- \blacktriangleright several right-hand sides (O(1) scaling per right hand side?)