L-sweeps:

A scalable parallel high-frequency Helmholtz solver

Russell J. Hewett^{*+} Matthias Taus^{†#}, Leonardo Zepeda-Núñez[%], Laurent Demanet[#]

Department of Mathematics, Virginia Tech

SIAM CSE 2019, Spokane, WA

February 28, 2019

*Virginia Tech +Total SA †TU Wien #MIT

RJH (CSE 19)

L-Sweeps for Helmholtz

February 28, 2019 1 / 26

Motivation

Wave propagation in geophysical applications

Inhomogeneous media

High frequency

RJH (CSE 19)

Model Problem

$$-\Delta u - \omega^2 m u = f \quad \text{in } \Omega$$

+ A.B.C. at $\partial\Omega$

- $\Omega \quad \dots \quad \text{Domain of interest}$
- $\omega \quad \dots \quad {\rm frequency}$

m ... squared slowness *f* ... sources

RJH (CSE 19

L-Sweeps for Helmholtz

February 28, 2019 3 / 26

Existing Fast Solution Techniques

 \blacktriangleright Classical iterative methods: $\mathit{n}_{\rm iter}$ grows with ω

- Classical iterative methods: n_{iter} grows with ω
- Classical direct methods:

	1D	2D	3D
operations	O(N)	$O(N^{\frac{3}{2}})$	$O(N^2)$
memory	O(N)	$O(N \log N)$	$O(N^{\frac{4}{3}})$

- Classical iterative methods: n_{iter} grows with ω
- Classical direct methods:

	1D	2D	3D
operations	O(N)	$O(N^{\frac{3}{2}})$	$O(N^2)$
memory	O(N)	$O(N \log N)$	$O(N^{\frac{4}{3}})$

Combination of iterative and direct methods

- Classical iterative methods: n_{iter} grows with ω
- Classical direct methods:

	1D	2D	3D
operations	O(N)	$O(N^{\frac{3}{2}})$	$O(N^2)$
memory	O(N)	$O(N \log N)$	$O(N^{\frac{4}{3}})$

Combination of iterative and direct methods
 Method of polarized traces

- Classical iterative methods: n_{iter} grows with ω
- Classical direct methods:

	1D	2D	3D
operations	O(N)	$O(N^{\frac{3}{2}})$	$O(N^2)$
memory	O(N)	$O(N \log N)$	$O(N^{\frac{4}{3}})$

Combination of iterative and direct methods
 Method of polarized traces

Half-space Problem

Polarization condition:

$$0 = -\int_{\Gamma} G(x, y) \partial_{n_y} u^{\uparrow}(y) ds_y + \int_{\Gamma} \partial_{n_y} G(x, y) u^{\uparrow}(y) ds_y$$

RJH (CSE 19)

RJH (CSE 19)

Serial complexity: O(N)

Question: Can we parallelize this preconditioner?

Problem: Serial nature of the sweeps

RJH (CSE 19)

February 28, 2019 9 / 26

RJH (CSE 19)

M O V I E! :)

Each propagation onto the next diagonal can is embarrassingly parallel on a cell-wise level!

$$\Rightarrow O(N/p) \text{ complexity} \\ \text{(as long as } p = O(N^{1/d}))$$

Numerical Example: Complexity

		Wa	Wavelengths in PML				
Wavelengths in domain	Number of cells	1	1.5	2	2.5	3	
16	2	5	3	3	3	3	
32	4	7	5	5	5	5	
64	8	7	6	6	6	6	
128	16	9	6	7	7	7	
256	32	12	9	7	7	7	
512	64	17	11	8	9	8	
1024	128	29	14	11	9	9	

		Wa	Wavelengths in PML			
Wavelengths in domain	Number of cells	1	1.5	2	2.5	3
16	2	5	3	3	3	3
32	4	7	5	5	5	5
64	8	7	6	6	6	6
128	16	9	6	7	7	7
256	32	12	9	7	7	7
512	64	17	11	8	9	8
1024	128	29	14	11	9	9

		Wa	Wavelengths in PML			
Wavelengths in domain	Number of cells	1	1.5	2	2.5	3
16	2	5	3	3	3	3
32	4	7	5	5	5	5
64	8	7	6	6	6	6
128	16	9	6	7	7	7
256	32	12	9	7	7	7
512	64	17	11	8	9	8
1024	128	29	14	11	9	9

Numerical Example: Iteration Count

${\bf 6}$ points per wavelength

		Wa	Wavelengths in PML			
Wavelengths in domain	Number of cells	1	1.5	2	2.5	3
16	2	4	3	3	3	3
32	4	5	3	3	3	3
64	8	7	3	3	3	3
128	16	9	5	4	3	3
256	32	11	6	5	5	4
512	64	17	9	7	5	5
1024	128	32	11	8	7	6

Numerical Example: Iteration Count

$8 \ { m points} \ { m per} \ { m wavelength}$

		Wa	Wavelengths in PML			
Wavelengths in domain	Number of cells	1	1.5	2	2.5	3
16	2	5	3	3	3	3
32	4	5	3	3	3	3
64	8	7	3	3	3	3
128	16	8	5	3	3	3
256	32	11	6	5	3	3
512	64	19	8	6	5	4
1024	128	-	11	9	7	5

Numerical Example: BP Model Setup

- Second order finite difference discretization
- ▶ unit square

		W	Wavelengths in PML				
Wavelengths in domain	Number of cells	1	1.5	2	2.5	3	
16	2	9	7	6	6	6	
32	4	12	7	7	7	7	
64	8	14	9	10	10	10	
128	16	16	12	12	12	12	
256	32	25	25	23	22	23	
512	64	30	26	26	26	26	
1024	128	-	29	29	28	28	

Numerical Example: Iteration Count

${\bf 6}$ points per wavelength

		Wavelengths in PML				
Wavelengths in domain	Number of cells	1	1.5	2	2.5	3
16	2	9	6	6	6	6
32	4	11	7	7	7	7
64	8	13	9	8	8	8
128	16	16	11	11	11	11
256	32	24	18	18	19	18
512	64	-	25	25	24	24
1024	128	-	29	28	28	27

Numerical Example: Iteration Count

$8 \ { m points} \ { m per} \ { m wavelength}$

		W	Wavelengths in PML				
Wavelengths in domain	Number of cells	1	1.5	2	2.5	3	
16	2	9	6	6	6	6	
32	4	11	6	6	6	6	
64	8	14	9	9	9	9	
128	16	22	16	17	14	13	
256	32	-	16	16	15	15	
512	64	-	22	21	21	21	
1024	128	-	-	26	26	26	

- max. 16 wavelengths in domain
- PML width: 1.25 wavelengths
- 2 × 2 domain decomposition

L-Sweeps for Helmholtz

February 28, 2019 20 / 26

- max. 32 wavelengths in domain
- PML width: 1.5 wavelengths
- 4 × 4 domain decomposition

- max. 64 wavelengths in domain
- PML width: 1.75 wavelengths
- 8 × 8 domain decomposition

- max. 128 wavelengths in domain
- PML width: 2.00 wavelengths
- 16 × 16 domain decomposition

- max. 256 wavelengths in domain
- PML width: 2.25 wavelengths
- 32 × 32 domain decomposition

- max. 512 wavelengths in domain
- PML width: 2.5 wavelengths
- 64 × 64 domain decomposition

Successful construction of a scalably parallelizable preconditioner for the high-frequency Helmholtz equation.

- O(N/p) complexity as long as $p = O(N^{1/d})$
- Independent of the discretization
- Applicable to heterogeneous media

Successful construction of a scalably parallelizable preconditioner for the high-frequency Helmholtz equation.

- O(N/p) complexity as long as $p = O(N^{1/d})$
- Independent of the discretization
- Applicable to heterogeneous media

Next steps:

- O(N/p)-scaling in 3D where $p = O(N^{2/3})$
- ▶ several right-hand sides (O(1) scaling per right hand side?)