
PREPRINT, VIA RJH.IO, SUBMITTED TO IEEE TPDS 1

Parallel Primitives for Domain Decomposition in
Neural Networks

Russell J. Hewett, Thomas J. Grady II, and Jacob Merizian

Abstract—Training deep neural networks (DNN) in distributed computing environments is increasingly necessary, as DNNs grow in size
and complexity. Local memory and processing limitations require robust data and model parallelism for crossing compute node
boundaries. We propose a linear-algebraic approach to model parallelism in deep learning, which allows parallel distribution of any tensor
in the DNN using traditional domain decomposition strategies. Rather than rely on automatic differentiation tools, which do not universally
support distributed memory parallelism models, we show that classical parallel data movement operations are linear operators, and by
defining the relevant spaces and inner products, we can manually develop the adjoint, or backward, operators required for gradient-based
optimization. We extend these ideas to define a set of data movement primitives on distributed tensors, e.g., broadcast, sum-reduce, and
halo exchange, which we use to build distributed neural network layers. We demonstrate the effectiveness of this approach by scaling
ResNet and U-net examples over dozens of GPUs and thousands of CPUs, respectively.

F

1 INTRODUCTION

T RAINING deep neural networks (DNNs) in extreme-
scale computing environments is a challenging yet

increasingly necessary component of modern computational
and data science workflows. Large problems in classical
data-driven machine learning (e.g., large multi-dimensional
or volumetric data processing problems, such as video
processing or seismic data processing, as well as natural
language processing [1]) and in scientific machine learning
(SciML [2]; e.g., those in physics-guided ML [3] which require
integration of parallel partial differential equation (PDE)
solvers [4], [5]) require robust parallelism models to cross
the compute-node boundary to get around limitations on
local memory and processing power (even with modern
large-memory GPUs). Data parallelism is ubiquitous in deep
learning, but model parallelism has been harder to achieve.
In particular, this is because the “model” in large deep neural
networks is highly irregular and has no uniform spatial
structure to induce the sparseness that is typical in large-
scale parallel simulation and inverse problems. In this paper,
we seek to expose parallelism in neural network training and
inference by studying the impact of domain-decomposition
strategies on any tensor in a network, including learnable
parameters, inputs, and outputs, on algorithms and compu-
tational performance.

Recently, multiple frameworks have been developed
which partially address the distributed deep learning prob-
lem. These frameworks build from, or into, popular frame-
works such as PyTorch [6] and Tensorflow [7], which natively
support data parallelism, to add support for pipelining [8],
or limited support for some model parallelism over some
aspects of the network [9], [10], [11], [12]. Native support
for distributed learning is also slowly appearing in popular

• R. J. Hewett is with the Department of Mathematics, Virginia Polytechnic
Institute and State University, Blacksburg, VA, 24061.
E-mail: rhewett@vt.edu

• T. J. Grady is with Georgia Tech and was with Virginia Polytechnic
Institute and State University.

• J. Merizian was with Virginia Polytechnic Institute and State University.

Manuscript received September 1, 2021.

ML frameworks. Parallelism in individual aspects of deep
learning, such as convolutional layers has also been investi-
gated [13], as well as aspects of some applications to parallel
physics-driven network structures in, e.g., seismic inver-
sion [14]. However, current approaches only provide partial
solutions and we lack a complete, integrated framework for
treating the distributed learning problem. Here, we aim to
provide such a framework. While this manuscript generally
addresses “model” parallelism within a single training or
inference step, our framework readily admits classical data
parallelism and pipelining, as well.

Automatic (or algorithmic) differentiation (AD) is among
the most important tools that computational science has
contributed to the democratization of deep learning. Given
an implementation of a computer algorithm for evaluating
a non-linear function F , forward-mode AD produces an
implementation of an algorithm for evaluating the action
of F , the Jacobian of F , and backward- or adjoint-mode
AD produces an algorithm for evaluating the action of
F ∗, the adjoint of the Jacobian of F [15]. In computational
science problems, such as partial differential equation (PDE)
constrained optimization [16], AD is frequently applied
to forward computation kernels to develop the correct
adjoint kernels necessary for numerical optimization. In deep
learning, it is used for similar tasks in the construction of
gradient calculations needed to invert for the parameters in
composite non-linear functions, such as DNNs.

However, AD tools, especially those in widely used deep
learning frameworks, have limited support for the data
movement1 operations required to run codes on distributed
memory supercomputers, inhibiting the development of fully
parallel deep learning codes. Historically, some AD tools [17],
[18] have provided limited support for differentiating dis-
tributed memory parallel codes, e.g., enabled via the Message
Passing Interface (MPI) [19]. However, such support is not
ubiquitous. Fortunately, as we will show, the data movement

1. We avoid the term communication because our model applies beyond
classical distributed memory settings.

PREPRINT, VIA RJH.IO, SUBMITTED TO IEEE TPDS 2

operations necessary for distributed memory parallelism are
linear operators. Consequently, we do not need to appeal to
AD to generate the adjoint operations needed for gradient
calculation. Instead, we exploit the definition of the adjoint
operator, careful definitions of the spaces they act upon, and
the inner products on those spaces, to build a set of primitive
operations, and their adjoints, to describe data movement in
computers and distributed memory supercomputers.

As we will demonstrate, these operations can be embed-
ded into a deep learning framework using the framework’s
native interface for specifying new functions, and composited
with existing network layers or functions. Thus, the data
movement operations, and their adjoints, become merely
another function for the framework’s automatic differenti-
ation engine to operate on. By posing the data movement
operations mathematically, we aim to expose parallelism
in neural networks through the mathematics. This will aid
optimal implementation in environments where end-users,
developers, and researchers do not have full control over
both the hardware, compiler, and software stacks and where
other, well established HPC software needs to be integrated.
We have implemented a proof-of-concept in our distributed
deep learning tool, DistDL [20], using MPI (via mpi4py [21])
and PyTorch [6].

The remainder of the manuscript is organized as follows.
In Section 2 we define the memory model and the linear alge-
braic foundation for our framework, including in Section 2.2,
where we show that classical distributed data movement
primitives fit our framework. In Section 3, we develop data
movement primitives for partitioned high-order tensors in
deep learning. We use these tools to assemble distributed
layer functions in Section 4. In Section 5 we realize some
example distributed neural networks and provide empirical
demonstrations of the effectiveness of this approach on
large CPU and CPU-GPU clusters. Finally, we offer our
perspectives on the ramifications of these results and future
developments in Section 6.

2 LINEARITY & DATA MOVEMENT

Let F be the space of relevant computer numbers, e.g.,
integers, reals, or floating point numbers. If F : Fm → Fn is
a linear operator, then F = F is its Jacobian and the adjoint
of the Jacobian, F ∗, is defined by the adjoint relationship,

〈Fx,y〉Fn = 〈x, F ∗y〉Fm , (1)

where Fk represents a k-length subset of a computer’s
memory. For simplicity in this development, we take the
inner product to be the standard Euclidean inner product,2

〈a, b〉Fk =
k−1∑
i=0

aibi a, b ∈ Fk. (2)

Thus, with a concrete implementation of F we can derive
and implement concretely the coherent associated F ∗, and
we can exploit these implementations in a deep learning
framework’s AD tool. We do not rely on the AD tools
themselves to generate the required kernels or to build the

2. When F is the space of floating point numbers, the inner product
must be constructed carefully, especially in parallel environments,
because floating point arithmetic is not associative.

computation graph through the data movement operators.
While the graph-based approach would produce results
identitical to our linear-algebraic approach, we find that
our approach is semantically more useful.

In general, the data realized in the subsets of the memory
are subsets of tensors. In defining these operations, we
make no assumptions about the order of the tensor or the
dimension-ordering, size, or storage layout of the underlying
multi-dimensional array representing it, though these do
matter in a practical implementation. To build parallel primi-
tives for deep learning, we must first understand the nature
of Fk and of the operators on it. In the ensuing discussion,
we consider the concept of “a computer’s memory” to be
broad. While it is easiest to consider Fk to be the main
memory of a single CPU of a single compute node (or
worker), this framework admits auxiliary memories, such as
those attached to GPU accelerators, remote memory on other
compute nodes or cloud instances, or even local or remote
disk.

2.1 Primitive Memory Operations

Here, we develop linear representations of primitive memory
operations and their adjoints, which we will use to develop
parallel data movement primitives and more complex dis-
tributed neural network layer structures. We are careful to
point out that the manual procedure that we outline below
is essentially how adjoint-mode AD works. However, we
find it useful to view these operations from a linear-algebraic
perspective, rather than from the typical computation-graph
perspective used in AD. In general, most AD tools do
not handle all possible data movement operations (e.g.,
worker-to-worker, host-to-device, disk-to-host, etc.) within
our inclusive memory model, so we must be able to build
the operations manually. Thus, our framework provides the
theoretical glue necessary to implement these operations
when they are not available natively. Moreover, in manual
implementations we can make some optimizations that AD-
generated codes cannot make, as some operations appear
only implicitly in forward codes, but must appear explicitly
in adjoint codes, or vice versa. In this manuscript we err on
the side of being explicit, while practical implementations
may not explicitly include all operations, except perhaps
during validation.

2.1.1 Allocation & Deallocation

The allocation of a new subset of memory, to be realized
by xb = 0b, for a program that already has space for xa

available, is a linear operation Ab : Fm → Fn,

Abx =

[
Ia
Ob

] [
xa

]
=

[
xa

0b

]
, (3)

where Ia is an identity operator on the original subset and Ob

is a zero operator on the new subset. The adjoint of allocation,

PREPRINT, VIA RJH.IO, SUBMITTED TO IEEE TPDS 3

A∗b , is derived through the standard inner product, as follows.

Assume x =
[
xa

]
∈ Fm and y =

[
ya

yb

]
∈ Fn. Then,

〈Abx,y〉Fn =
n−1∑
i=0

(Abx)iyi =
m−1∑
i=0

(Iaxa)iyi =
m−1∑
i=0

xiyi

=
m−1∑
i=0

xi(Iaya)i =
m−1∑
i=0

xi(Iaya +OT
b yb)i

=
〈
x, AT

b y
〉
Fm

= 〈x, A∗by〉Fm . (4)

Thus, A∗b is the transpose3 of Ab, and acts on a realization y
from Fn,

A∗by = AT
b y =

[
Ia Ob

] [ya

yb

]
=
[
ya

]
. (5)

The adjoint of allocation is deallocation, and similarly the
deallocation primitive Db has allocation as its adjoint, D∗b =
Ab.

We use a liberal definition of “allocation,” which goes be-
yond classical memory allocation operations (e.g., malloc()
in C) because these operations are describing the semantics
of an implementation, not syntax. Allocation is any operation
which brings memory into scope, including formal allocation
on the heap, acquisition of resources from a memory pool,
the addition of data to the stack, creation of a reference, etc.
In the context of a neural network layer, this means that if
data is not checkpointed for use in the adjoint phase during
the forward phase and it goes out of scope, then we consider
it to be “deallocated” when the forward function completes.

2.1.2 Clear

The clear operator, Kb, sets a realization of a subset of x, xb

to 0. The operation, Kb : Fm → Fm is realized by,

Kbx =

[
Ia

Ob

] [
xa

xb

]
=

[
xa

0b

]
, (6)

and it is trivially self-adjoint, K∗b = Kb, following a similar
derivation as above.

2.1.3 Add

The add operator, Sa→b : Fm → Fm, performs in-place
summation of xa to xb,

Sa→bx =

[
Ia
Ia Ib

] [
xa

xb

]
=

[
xa

xa + xb

]
. (7)

The adjoint of an add is also an add, but in the reverse
direction,

S∗a→by =

[
Ia Ib

Ib

] [
ya

yb

]
=

[
ya + yb

yb

]
= Sb→ay. (8)

The derivation follows as above.

3. The adjoint is strongly dependent on the inner product and is not
always the matrix transpose, but it will be in this work.

2.1.4 Copy
The copy operator, which copies data from the subset xa to
xb, has both in-place and out-of-place forms, made distinct
only by the semantics of an implementation. An in-place
copy is the composition of clear and add while an out-of-
place copy is the composition of allocate and add. This may
seem pedantic, as “x = c;” is more concise than “x = x

* 0; x = x + c;”, but the distinction becomes important
when we subsequently define higher-level operations.

The in-place copy operator, Ca→b : Fm → Fm, takes

input x =

[
xa

xb

]
∈ Fm, produces output x̂ =

[
xa

xa

]
∈ Fm,

and

Ca→b =

[
Ia Ob

Ia Ob

]
=

[
Ia Ob

Ia Ib

] [
Ia Ob

Oa Ob

]
= Sa→bKb. (9)

From linear algebra, the adjoint of in-place copy is,

C∗a→b = (Sa→bKb)
∗ = K∗bS

∗
a→b = KbSb→a. (10)

The out-of-place copy operator, Ca→b : Fm → Fn, takes

input x =
[
xa

]
∈ Fm, produces output x̂ =

[
xa

xa

]
∈ Fn, and

Ca→b =

[
Ia
Ia

]
=

[
Ia Ob

Ia Ib

] [
Ia
Ob

]
= Sa→bAb, (11)

and its adjoint is C∗a→b = DbSb→a.
Whether a given copy is in-place or out-of-place depends

strongly on the application. Parallel codes for numerical
simulation tend to prefer in-place operations, as memory
allocation is expensive and best practices for HPC software
prefer re-using existing space. In deep learning frameworks,
out-of-place operations are common because they simplify
and stabilise the computation graph. These distinctions are
important when considering a concrete implementation of
higher-level primitives, but have minimal theoretical impact.

2.1.5 Move
The move operator moves a realization xa to xb, and similar
to copy, has in-place forms,

Ma→b = KaSa→bKb, (12)
M∗a→b = KbSb→aKa = Mb→a, (13)

and out-of-place forms,

Ma→b = DaSa→bAb, (14)
M∗a→b = DbSb→aAa = Mb→a, (15)

which we justify in Appendix A. Again, the choice of in-place
or out-of-place forms impacts only some implementation
decisions.

2.2 Classical Parallel Primitives

Using these primitive memory operations, we construct
linear operators representing several standard parallel data
movement primitives and their adjoints. To accommodate op-
erations on distributed memory computers, we now consider
the definition of the memory space to include all memories
on a compute cluster. While we discuss operations as if the
parallel workers are distinct compute nodes, this distinction
is made explicit only by a communication library, such as

PREPRINT, VIA RJH.IO, SUBMITTED TO IEEE TPDS 4

MPI, and our model is independent of the data movement
back-end. In the ensuing discussion, we will generally
assume that operations are out-of-place – communicating
data results in a new memory allocation on the “receiving”
worker. While this is generally not best practice in large-
scale simulation, out-of-place operations better map to the
AD models of popular deep learning frameworks. The one
exception in this presentation is the halo exchange (Sec. 3.2.5),
which we will assemble as an in-place operation, following
from standard practice in large-scale simulation. Adapting
internal mechanics of out-of-place operations to in-place
operations has no bearing on the output, so, if such an
implementation is preferred in performance environments, it
is of minor consequence.

For completeness, we show allocations or deallocations,
but in practice they may not be explicitly implemented. While
we often express data movement using copy, if the primal
realization is deallocated or otherwise not used any further
after the copy, the copy may be expressed as a move instead.
In practice, many operations we make explicit are needed
only theoretically. For example, in the adjoint halo exchange
we express clears on the exchange buffers for mathematical
consistency, but these are handled implicitly when assigning
data to the buffers.

2.2.1 Point-to-point Operations
The most basic distributed memory data movement opera-
tion, from which all others can be derived, is send-receive. In a
concrete implementation, the send-receive pair requires two
function calls (send and receive) by separate workers, but
from a linear-algebraic perspective, the send-receive operator
is simply a copy Ca→b, where the subsets xa and xb are on
the two different workers. Consequently, in the adjoint-phase,
we make note of two observations. First, the adjoint of the
send-receive involves an add, which means may require an
additional communication buffer, but also that if the adjoint
realization has ya initialized to 0a, then the adjoint operation
is also essentially a copy. Second, for correctness the adjoint
realization yb should be cleared. This clear does not need
to be explicitly performed if yb is not accessed again. If the
forward data xa is not used after the send-receive, then we
can interpret the send-receive as a move operation, instead
of a copy, and the first consideration becomes explicit. While
the send-receive operation is not self-adjoint, a practical
implementation of its adjoint does require a receive-send
pair. In a concrete implementation of forward and adjoint
distributed copies may use either blocking or non-blocking
operations, as long as the implementation of each direction
is reentrant.

2.2.2 Scatters and Gathers
The scatter primitive is essentially a sequence of send-receive
pairs, where subsets of x are copied or moved to multiple
other workers. Linear-algebraically, this is is a block-diagonal
matrix with send-receive blocks on the appropriate diagonal.
The adjoint derivation follows from the previous discussion.
If the data movement operations are equivalent to move,
then the adjoint operation becomes an instance of the gather
primitive, which collects data from multiple workers into
one subset on one worker, otherwise communication still
follows the gather pattern, up to the summation and clear

operations. Similarly, the gather can be a forward operation,
and its adjoint is essentially a scatter.

2.2.3 Broadcasts

A critical parallel primitive, the broadcast, is identified and
implemented in many distributed memory deep learning
tools [6], [9], [10] because it is necessary to distribute network
parameters to multiple workers. A broadcast, Ba→{k}, is a
linear operator from one realization on subset xa to k copies
of that realization on subsets x0, . . .xk−1 and is k copy
operations. Assuming an out-of-place formulation, that is,
only the input realization xa is allocated,

Ba→{k}xa = DaCa→k−1 · · ·Ca→1Ca→0xa

= DaSa→k−1Ak−1 · · ·Sa→1A1Sa→0A0xa

= DaSa→k−1 · · ·Sa→1Sa→0A{k}xa

= DaΣa→{k}A{k}xa

=
[
x0 x1 · · ·xk−1

]T
, (16)

where Σa→{k} is a broadcasting summation that is practi-
cally implemented as a standard broadcast and the final
deallocation is a notational convenience which may not
be explicitly performed. While this above “implementation”
scales linearly with k, the canonical logarithmic broadcast
implementation has an equivalent representation.

The adjoint of the out-of-place broadcast operator is

B∗a→{k}y{k} = (DaCa→k−1 · · ·Ca→1Ca→0)∗y{k}

= C∗a→0C
∗
a→1 · · ·C∗a→k−1D

∗
ay{k}

= D0S0→aD1S1→a · · ·Dk−1Sk−1→aAay{k}

= D{k}S0→aS1→a · · ·Sk−1→aAay{k}

= D{k}Σ{k}→aAay{k} = ya, (17)

where Σ{k}→a is the adjoint of Σa→{k} and is a reducing
summation that is practically implemented as a standard
sum-reduction. For in-place formulations, the copy Ca→0

may be replaced with an identity and the allocations (and
deallocations in the adjoint) are replaced with clears.

2.2.4 Reductions

The sum-reduce primitive, of equal importance with the
broadcast, represents summation of k realizations in k
subsets of the memory into xa. Again, assuming an out-
of-place formulation,

R{k}→ax{k} = D{k}Sk−1→a · · ·S1→aC0→ax{k}

= D{k}Sk−1→a · · ·S1→aS0→aAax{k}

= D{k}Σ{k}→aAax{k} = xa,

where, sensibly, the reducing sum should be implemented via
sum-reduction and the final deallocation is again a notational
convenience.

Just as the adjoint of the broadcast contains a sum reduc-
tion, the adjoint of a sum reduction contains a broadcasting
summation,

R∗{k}→aya = DaSa→0Sa→1 · · ·Sa→k−1A{k}ya

= DaΣa→{k}A{k}ya = y{k}, (18)

PREPRINT, VIA RJH.IO, SUBMITTED TO IEEE TPDS 5

and again, an in-place implementation may replace the initial
copy with an identity. Other reductions can be expressed
similarly, up to linearization of the forward operation.

All-reduce primitives are useful in some frameworks, e.g.,
in [13] where it used in a distributed convolution, and in
normalization layers. Conceptually, an all-reduce is simply
the composition of a sum-reduction and a broadcast,

A{k}→{k} = Ba→{k}R{k}→a, (19)

and is trivially self-adjoint,

A∗{k}→{k} = R∗{k}→aB
∗
a→{k} = Ba→{k}R{k}→a = A{k}→{k}.

(20)

A practical implementation does not require explicit reduc-
tion and broadcast operations. However, this perspective
illuminates a philosophical difference between our model
and all-reduce oriented models. In an all-reduce-based
distributed framework, the distributed weight updates must
be manually all-reduced so that each worker can perform the
same update. While correct from an engineering perspective,
this means that the adjoint implementation may no longer
be coherent with the forward implementation. Following our
approach, if the original weight tensor is broadcast during
the forward phase, the sum-reduction on the weight updates
is induced naturally and the forward and adjoint functions
remain coherent.

2.2.5 All-to-all
The all-to-all primitive is used to redistribute data across a
distributed memory. This primitive, T{k}→{l}, is often called
transpose, due to the movement patterns when the input data
is 1D, or shuffle [13] to avoid confusion because it is not a
true matrix transpose. In either case, from the linear algebraic
perspective T is a block matrix where the copy blocks are
placed to copy the correct data from the subset of memory
{k} to another subset {l}. From the perspective of any given
parallel worker, copying off of that worker is a scatter and
copying on to that worker is a gather. The data movement
pattern of the adjoint is similar to the forward, however the
summations must be respected. If moves are used instead
of copies, the adjoint is another all-to-all operation, but the
operation is not self-adjoint.

3 PARALLEL PRIMITIVES FOR TENSORS

In the previous section we detailed a general linear algebraic
approach to the data movement operations that form the
foundation of many parallel codes, and the necessary adjoints
for embedding them into an AD framework. In this section,
we adapt and build from those primitives to identify five
parallel primitives for distributed tensors that are used in our
distributed neural network layer functions. In the previous
discussion, we made no imposition on the structure of the
input or output data – only that we were able to operate on
subsets of that data. Here, we begin by describing the general
structure of the data and how we represent its distribution
on a parallel computer. Then, we detail the five primitives,
BROADCAST, SUMREDUCE, ALLSUMREDUCE, REPARTITION,
and HALOEXCHANGE themselves, as well as information on
practical implementations, verification, and validation.

3.1 Tensor Partitions

In deep learning, we encounter a variety of tensors which
may have arbitrary order (or number of dimensions). For
example, an input tensor for a 3D classification problem will
usually be of order 5 and have shape nb×nc×n2×n1×n0,
where the dimensions are the size of the batch, channel,
and the three feature dimensions, respectively. The actual
ordering the data in memory, especially respecting the fast
dimension, is not relevant for this discussion, though is
highly relevant in a practical implementation. In this work
we will assume that input and output tensors will always
have the batch dimension first, followed by channel, and
then the D feature dimensions. Weight and bias tensors will
depend on the operation they are a part of and their shapes
will be noted as needed. Occasionally, we will need to inject
fictitious, degenerate dimensions to simplify some operations.
Regardless of any structure associated with underlying
features, we will assume that the tensors themselves are
stored by strided multi-dimensional arrays.

In a parallel environment, we will partition4 these tensors
along each of their dimensions. A partition P will have the
same order (number of dimensions) of the tensor it partitions.
For example, a partition of the above input tensor for 3D
classification would have the structure

P = Pb × Pc × PD−1 × · · · × P0, (21)

where the channel size nc is partitioned into Pc parts, etc.
The total number of workers required to store a tensor
partitioned by P is the product of the number of workers in
each dimension.

The choice of optimal partition is highly problem-, com-
putational kernel-, and machine-dependent. P may partition
more than one tensor. In general, for simplicity, we take
Pb = 1, as Pb > 1 is data parallelism and is generally
embarrassingly parallel. As with tensors, it will occasionally
be convenient to promote a partition by adding a degenerate
(size 1) dimension.

3.2 Primitives

Using the linear algebraic perspective of parallel data move-
ment, we are able to build five data movement primitives
for partitioned tensors. These primitives are higher-order
analogs of the standard parallel primitives – their forward
behavior is composed from the classical primitives and their
adjoint behavior is naturally induced. Here, we define a
high-level sketch of the primitives, along with examples
describing their usage. Algorithms for these primitives are
available in DistDL [20].

3.2.1 BROADCAST

Assume a tensor x is partitioned by Px and that Py is a
partition of the same order as Px. The distributed-tensor
broadcast B{Px}→{Py} broadcasts x from Px onto Py if, for
all dimensions k, Pxk

= Pyk
or Pxk

= 1. Note, these require-
ments are a subset of the NumPy broadcasting rules [22].
Subtensors of x are copied Pyk

times in dimensions where

4. Partitions are sometimes referred to as a shard in related contexts,
however as our approach is inspired by classical mesh partitioning, we
will follow that terminology.

PREPRINT, VIA RJH.IO, SUBMITTED TO IEEE TPDS 6

(a)

(b)

Fig. 1. Broadcast and SumReduce (a) for Px = 1 × 1 and Py = 2 × 3
and (b) for Px = 1× 1× 3 and Py = 4× 4× 3.

Pxk
= 1 and no operation occurs when Pxk

= Pyk
. As in [22],

we allow implicit extension with dimension 1 partitions. This
yields an output tensor y containing

∏
k∈K Pyk

copies of
the input tensor, where K = {k|Pxk

= 1}. For example, in
Figure 1a, a tensor with Px = 1×1 is broadcast to Py = 2×3,
resulting in 6 copies of the original tensor. In Figure 1b, a
tensor with Px = 1 × 1 × 3 is broadcast to Py = 4 × 4 × 3,
resulting in 16 copies of the original tensor. The adjoint,
B∗{Px}→{Py} follows from Section 2.2.3 and is a reduction
back along the same dimensions.

Details of how to implement these operations are highly
specific to the libraries, frameworks, and systems in use. The
accompanying package DistDL [20] provides an example of
how to construct the required communication patterns using
MPI groups and communicators.

3.2.2 SUMREDUCE

Assume a tensor x is partitioned by Px and that Py is a
partition of the same order as Px. The distributed-tensor sub-
reduction R{Px}→{Py} reduces x from Px onto Py if, for all
dimensions k, Pxk

= Pyk
or Pyk

= 1. These are essentially
the reverse of the broadcast rules above. Subtensors of x
are reduced from Px along dimensions where Pyk

= 1 and
no operation occurs for dimensions where Pxk

= Pyk
. This

yields an output tensor y containing
∏

k∈K Pyk
subtensors,

for K = {k|Pxk
= Pyk

}. For example, Figure 1a, a tensor
with Px = 2 × 3 is reduced to Py = 1 × 1, resulting in a
single subtensor. In Figure 1b, a tensor with Px = 4× 4× 3
is broadcast to Py = 1 × 1 × 3, resulting in 3 subtensors.
The adjoint, R∗{Px}→{Py} follows from Sec. 2.2.4 and is a
broadcast back along the same dimensions.

3.2.3 ALLSUMREDUCE

The distributed-tensor all-sum-reduction, APx , is conceptu-
ally related to the distributed-tensor broadcast and sum-
reduction, however, we require only the input partition
Px and a list of the dimensions along which the sum-
reduction should occur. These dimensions implicitly define
an intermediate partition with the same structure as the
output or input partition of R{Px}→{Py} or B{Px}→{Py},
respectively. However, it can be implemented with a set
of carefully selected classical all-reductions and does not
require explicit use of reductions or broadcasts.

(a)

(b)

Fig. 2. Repartition operations (a) mimicking classical all-to-all and (b) for
general repartitioning, gather, and scatter on distributed tensors.

3.2.4 REPARTITION

The repartition primitive T{Px}→{Py} is the distributed-
tensor equivalent of the classical all-to-all primitive and
takes an input tensor x partitioned by Px and remaps it
to the workers in Py . To see the relationship with all-to-all,
consider the illustration in Figure 2a. Here, x on Px = 4×1 is
equivalent to a row-major, flattened 1D array. The classical all-
to-all operation repartitions that data to a Py = 1×4 partition.
The same idea applies in higher-dimensions, as illustrated
in Figure 2b, where an order 3 tensor on Px = 3× 2× 2 is
repartitioned onto Py = 1× 2× 3.

In our development and application, we have found this
primitive to be unexpectedly useful. In practice, there is
no requirement that Px and Py have the same number of
workers, so it can be used to intentionally idle some workers.
Alternatively, if a tensor is not load balanced, it can be used
to redistribute data within the same partition to create load
balance. Some computational kernels are more efficient if
tensors have specific structure, e.g., cache-blocking in fast
dimensions. In these cases repartition can be used to better
align the subtensors for the computational kernels. In the
absence of parallel I/O, an entire tensor can be read from or
written to disk by one worker, essentially on a P1 = 1×· · ·×1
partition. Repartitioning P1 to any other partition is the
distributed-tensor scatter operation. Repartitioning from any
other partition back to P1 is the distributed-tensor gather
operation, as illustrated in Figure 2b.

3.2.5 HALOEXCHANGE

In classical large-scale PDE-driven simulation, a decompo-
sition of the relevant spatial domain allows for effective
model parallelism: large variables are distributed to different
workers according to the spatial decomposition. When a
differential operator is sparse and the solver is explicit,
physical interactions are local and minimal data, found near
the domain boundaries, needs to be shared between adjacent
workers. In neural networks, analogous situations arise for
layers featuring small, sliding kernels, such as convolutional

PREPRINT, VIA RJH.IO, SUBMITTED TO IEEE TPDS 7

layers and pooling layers. For each worker to correctly apply
the computational kernel, this halo region must contain
copies of the current data owned by neighboring workers.
The exchange of this boundary data between workers is
known as a ghost exchange or halo exchange. This is not
a traditional primitive operation in classical distributed
computing, rather it is considered a nuisance operation. The
halo exchange can be conveniently written in our framework,
which allows it to be extended to tensors of arbitrary order
and naturally embedded into distributed neural networks.

Due to this irregular structure, we use the linear-algebraic
framework to define an algorithm for generalized halo
exchange for partitioned tensors, as well as its adjoint. In
our algorithm, we neither make any assumptions on the
order of the input or output tensors (only that they match)
nor the structure of the kernel. As computational load on a
given worker is driven by the volume of that worker’s output
subtensor, we assume that the output tensor is optimally load
balanced and derive the necessary input tensor halo sizes in
each dimension from there. We assume that the tensors are
sensibly decomposed, relative to kernel size, so that halos
require data from directly adjacent neighbor workers only.
The portion of the distributed tensor that is owned by a
worker is the bulk region and the halo exchange ensures
that a worker has copies of the necessary portions of its
neighbor’s bulk regions in its halo region.

All halo regions, both left and right, from all dimensions
of an order d tensor may have different thickness. The
thicknesses are determined by the minimum and maximum
global indices of the worker’s output tensor and the size,
stride, dilation, and padding parameters of the kernel. From a
linear-algebraic perspective, the halo exchange is a sequence
of send-receive operations. For efficiency, we assume that
the halo exchange is in-place, so the input and output
realizations are on the same memory subset. Following
the linear-algebraic view, the halo exchange operator for
one worker exchanging with its neighboring workers in
dimension k is,

Hk = KTCUCECPKS, (22)

where the setup operator, KS, clears the exchange buffers;
the pack operator, CP, copies from the bulk region to the send
buffer; the exchange operator, CE, copies from the current
worker’s send buffer to the neighboring worker’s receive
buffer, and vice versa; the unpack operator, CU, copies from
the receive buffer to the halo region; and the teardown
operator, KT, clears on the exchange buffers. For order d
tensors, the exchange is performed one dimension at a time,
in a nested manner to ensure proper communication of data
in corner cases [23]. Thus, the full exchange operator is,

H = Hd−1 · · ·H1H0, (23)

with corresponding adjoints,

H∗k = K∗SC
∗
PC
∗
EC
∗
UK
∗
T , (24)

H∗ = H∗0H
∗
1 · · ·H∗d−1. (25)

In practice, clearing the exchange buffers is implicit. We
illustrate the generalized, unbalanced forward and adjoint
halo exchanges in Appendix B. This view justifies an obser-
vation that has been used in production PDE-constrained

optimization codes for some time [24]: in the adjoint of halo
exchange, there is an add operation into the bulk tensor. This
is ultimately because the three copy operations, at the center
of each part of the exchange, copy data from the bulk of one
worker to the halo region of another and the ensuing adjoint
phase must produce an add.

3.3 Implementation & Validation
In our distributed deep learning library, DistDL, we have
provided implementations of many necessary primitives for
PyTorch autograd [25]. In parallel environments, verifica-
tion of correctness using numerical gradient validation is
difficult. Fortunately, data movement operations are linear
and we can exploit the fact that the forward operator is its
own Jacobian, F = F , and the definition of the adjoint to
establish an equivalent test for correctness. We say that an
implementation of F ∗ is coherent with F if the adjoint test is
satisfied ∀x ∈ Fm, ∀y ∈ Fn,

|〈Fx,y〉Fn − 〈x, F ∗y〉Fm |
max {‖Fx‖Fn‖y‖Fn , ‖x‖Fm‖F ∗y‖Fm}

< ε, (26)

where ε is related to machine-ε and realizations from Fm and
Fn are, in practice, drawn randomly.

4 DOMAIN-DECOMPOSED LAYER FUNCTIONS

Using the distributed tensor primitives in Section 3 or direct
application of the classical primitives in Section 2.2, we can
define distributed algorithms for common neural network
layers. We classify these algorithms, broadly, by the way
mathematical operations and learnable parameters interact
with input data: hyper-locally, locally, and globally. Hyper-
local functions, e.g., activation functions and dropout func-
tions, are characterized by their point-wise application and
no data movement is required to apply them in parallel. Local
functions require information from other nearby features
(usually no further away than one neighboring worker) and
are characterized by structured sparsity in the operator at
the core of the function. Global functions may require data
from any part of the distributed tensor and are characterized
by dense linear operations.

4.1 Local Functions
4.1.1 Down- or Up-sampling Layers
Among this class of layers, pooling layers are the most straight-
forward to parallelize. Assume the input and output tensor
x and y have feature-space dimension D and overall shape
nb × nc ×mD−1 × · · · ×m0 and nb × nc × nD−1 × · · · × n0,
where nb, nc, and mk and nk are the batch, channel, and
feature dimensions, respectively. For both tensors, distributed
over a partition P with shape 1× Pc × PD−1 × · · · × P0, the
distributed pooling algorithm and the adjoint of its Jacobian
are in Figure ??.

The algorithm does not rely on linearity in the pooling
operation, so any pooling operation is permitted, including
average and max pooling. The halo exchange H is strongly
dependent on the pooling kernel size, stride, dilation, and
padding parameters. In practice, padding shims are required
to account cases where halos are needed or extra input is
provided (e.g., those in Appendix B).

PREPRINT, VIA RJH.IO, SUBMITTED TO IEEE TPDS 8

Forward Pooling
1: Input: x δ
2: x← Hx δ
3: y ← POOL(x) δ
4: Output: y δ

Adjoint Pooling
1: Input: δy
2: δx← [δPOOL]∗(δy)
3: δx← H∗δx
4: Output: δx

Fig. 3. Forward and adjoint distributed pooling algorithms. POOL is a
pooling function and [δPOOL]∗ is the adjoint of its Jacobian.

Forward Convolution
1: Input: x δ
2: x← Hx δ
3: ŵ ← B{Pr}→{Pw}w δ

4: b̂← B{Pr}→{Pw}b δ
5: x̂← B{Px}→{Pw}x δ

6: ŷ ← CONV(ŵ, b̂; x̂) δ
7: y ← R{Pw}→{Py}ŷ δ
8: Output: y δ

Adjoint Convolution
1: Input: δy
2: δŷ ← B{Py}→{Pw}δy

3: δŵ, δb̂, δx̂← [δCONV]∗(δŷ)
4: δx← R{Pw}→{Px}δx̂

5: δb← R{Pw}→{Pr}δb̂
6: δw ← R{Pw}→{Pr}δŵ
7: δx← H∗δx
8: Output: δx

Fig. 4. Forward and adjoint distributed convolution algorithms. CONV is a
convolution function and [δCONV]∗ is the adjoint of its Jacobian.

Upsampling may be handled by a variety of interpolating
layers or even so-called “transposed convolutions”. In the
case of the former, the algorithm is very similar to that of
pooling. A transposed-convolution approach will be similar,
however, due to learnable parameters, it shares algorithmic
elements with the classical convolution.

4.1.2 Convolutional Layers
Convolutional layers are a frequent target for paralleliza-
tion [11] and were targeted by [13] to improve strong
parallel scalability. Ultimately, we seek weak scalability as
we are interested in problems where the input tensors can
have billions of features. Anticipating that these tensors
will be decomposed over potentially thousands of workers,
we avoid the explicit all-reduce operation often used in
the gradient update. Instead, we formulate the layer so
that the all-reduce appears implicitly: a broadcast in the
forward implementation naturally induces a sum-reduce in
the adjoint phase.

Assume a similar structure as for the pooling layer, except
that the learnable weights w have shape nco × nci × kD−1 ×
· · · × k0, where nci and nco are the input and output channel
sizes and ki is the kernel size, and are distributed over
partition Pr with shape Pco×Pci. To avoid multiple counting
of the bias, assume that the learnable part of the bias is only
present on one Pco × 1 subpartition of Pr . For Px = 1× 1×
Pci×PD−1×· · ·×P0, Py = 1×Pco× 1×PD−1×· · ·×P0,5

and a work partition Pw = 1 × Pco × Pci × PD−1 × · · ·P0,
the generalized distributed convolution layer and the adjoint
of its Jacobian are given in Figure 4.

If the input tensor is distributed over the feature-space
exclusively, then the weights are not distributed over the
channels and the algorithm can be significantly simplified
by removing the broadcasts and reductions in steps 5 and
7 of the forward algorithm (and corresponding operations
in steps 2 and 4 of the adjoint). If the tensors are distributed
over the channels exclusively, we remove the need for the

5. The additional dimensions aid the broadcasting pattern but do not
impact the result.

Forward Affine
1: Input: x δ
2: x̂← B{Px}→{Pw}x δ

3: ŷ ← AFF(ŵ, b̂; x̂) δ
4: y ← R{Pw}→{Py}ŷ δ
5: Output: y δ

Adjoint Affine
1: Input: δy
2: δŷ ← B{Py}→{Pw}δy

3: δŵ, δb̂, δx̂← [δAFF]∗(δŷ)
4: δx← R{Pw}→{Px}δx̂
5: Output: δx

Fig. 5. Forward and adjoint distributed affine algorithms. AFF is an affine
function and [δAFF]∗ is the adjoint of its Jacobian.

halo exchange and the broadcasts in steps 2, 3 and 4 of the
forward (and corresponding operations in steps 5, 6, and 7
of the adjoint). However, this form of the algorithm is quite
greedy with respect to need of workers and further research
is required more efficient resource utilization.

4.2 Global Functions
4.2.1 Dense Linear Layers
Dense layers are characterized by full-connection between
input and output features, often through the affine function
y = Wx + b, where W is a dense nfo × nfi matrix and
nfo and nfi are the number of output and input features.
Optimal parallelism in such layers is found through a dis-
tributed generalized matrix-matrix multiplication, or GEMM,
algorithm [26]. Optimal GEMM structure and performance
is dependent on the computing environment, the size and
rank of the tensors, and is an area of open research. We
present an implementation based on the primitives above,
recognizing that depending on the partitioning of workers,
production distributed GEMM implementations may have
different flavor. A distributed affine layer has similar setup
as the distributed convolution, except that the weight tensor
is nfo × nfi, where nfo and nfi are the number of features
in and out, and is distributed on Pw = Pfo × Pfi partition.
The learnable bias, of size nfo, is present only on one Pfo× 1
subset of Pw, to avoid any issue with multiple-counting of
the bias. For simplicity, we assume that the layer is fully-
connected and that input and output tensors x and y have
size nb × nfi and nb × nfo, and are distributed on partitions
Px and Py , with shape 1 × Pfi and 1 × Pfo, respectively.
The extension to arbitrary tensor dimensions is similar to the
distributed convolution layer. The algorithm and the adjoint
of its Jacobian are given in Figure 5.

Algorithms for channel-only distributed convolutions are
quite similar to those for distributed dense linear operations,
so future research in either should inform improvements to
the other. For example, like the generalized convolution, this
algorithm is greedy with respect to the require workers,
so, e.g., Cannon’s algorithm, should be considered for
application to networks that traditionally use many dense
layers, such as recurrent networks or transformers.

4.2.2 Normalization Layers
Normalization layers, which normalize feature statistics, are
critical to neural network training to prevent catastrophic
growth or decay in gradients. Strategies, such as batch
normalization [27] and group normalization [28], which is
useful when only small minibatches are feasible [29], are
common. Normalization layers all have similar structure:
feature means and variances are computed along some

PREPRINT, VIA RJH.IO, SUBMITTED TO IEEE TPDS 9

dimensions of the tensor and all values in the tensor
are normalized by the resulting statistics. In a distributed
environment, the statistics are required on all workers, and
thus must be computed by way of an all-reduction. For ex-
ample, in distributed batch normalization, this is performed
along locally along the channel dimension of each worker’s
subtensor and then globally via an AllSumReduce operation
along the partition’s channel dimension. The correct adjoint
all-reduction is naturally induced during the training process.

4.3 Loss Functions
While they require global information over the entire output
tensor, loss functions are computed point-wise, up to a sum-
reduction. Losses in a distributed environment are thus
nearly embarassingly parallel, but do require a distributed
sum reduction to assemble the final loss. Some distributed
deep learning models may compute this via an all-reduction
so that all workers have the loss value, but if it is not
manually short circuited, this should induce a redundant
all-reduction in the adjoint pass. In our approach, to preserve
mathematical consistency, we allow the required broadcast
(second half of the all-reduction) to be induced naturally in
the adjoint from the sum-reduction in the forward evaluation.

5 DOMAIN-DECOMPOSED NEURAL NETWORKS &
DISTRIBUTED PERFORMANCE

We have implemented a number of the above layers [20]
to demonstrate of the effectiveness of our model. These
implementations explicitly rely on PyTorch’s underlying
implementation of the base layer function. Using our dis-
tributed convolution, pooling, and affine layers, as well as
some repartitioning layers as glue, we have implemented
distributed versions of the Lenet-5 convolutional neural net-
work [30], the VGG [31] family of networks, the ResNet [32]
family of networks, and U-nets [33]. While the first two
are optimized around small inputs, and therefore benefit
little from domain decomposition, we provide them as
small examples [20] of the concepts in this paper. Here,
the convolutional nature of feature-identification makes it
simple to parallelize, while the dense classifier is more
difficult. In the ensuing discussion and experiments, we
focus on ResNets, which are inherently easier to domain
decompose due to their convolutional nature and their
intrinsic relationship with differential equations [34], and
U-nets, which are notoriously difficult to apply efficiently to
large, 3D problems [29]. DistDL’s programming interface is
similar to that of PyTorch and adapting sequential PyTorch
networks to the domain decomposition model requires but a
small number of changes. Thus, with some knowledge of the
target cluster and available resources, it is relatively simple
to modify existing training code to take advantage of model
parallelism through domain decomposition.

5.1 Inputs
To preserve performance, loading and storage of distributed
network input must also be performed in parallel. When
this is not possible, a single worker can load the data and
repartition (scatter) it to the other workers. In this scenario,
care must be taken to avoid poor memory load balance.

Fig. 6. Weak scaling study for deep residual network in DistDL, profiled
on T4 and P100 GPUs with 1,400× 1,400 inputs. Solid and dashed lines
are mean time per batch for forward and adjoint passes.

Fig. 7. Weak scalability of ResNet34, ResNet50, and ResNet101 on up
to 24 NVIDIA P100 and up to 16 NVIDIA T4 GPUs. Initial problem sizes
are given in Table 1.

Additionally, the ground truth classes, segmentations, etc.,
must also be distributed similarly. In our examples, we
assume that the input data can be loaded in parallel using,
e.g., MPI I/O or generated in parallel to mimic this behavior.

5.2 Residual Neural Networks

Residual neural networks (resnets) are composed of blocks,
in which the input x to the block is added to the output of
some operator F via a "skip connection," [32]

xi+1 = F [xi] + xi. (27)

Skip connections regularize gradient calculation in very deep
neural networks, but with this depth can come high memory
consumption, especially for large inputs. Additionally, due to
their relationship with differential equations [34] which are
well-studied in distributed memory environments, resnets
are an ideal candidate for demonstrating the capabilities of a
generalized distributed deep learning framework.

Using DistDL, we have implemented distributed variants
of all of the classes of ResNet [32], as well as a more

Fig. 8. Weak scalability of ResNet34, ResNet50, and ResNet101 on up
to 24 NVIDIA A100 GPUs. Initial problem sizes are given in Table 1.

PREPRINT, VIA RJH.IO, SUBMITTED TO IEEE TPDS 10

ResNet34 ResNet50 ResNet101
P100 2,2002 1,3002 1,1002

T4 2,0482 1,5002 1,2002

A100 3,9002 3,5002 3,0002

TABLE 1
Input size per-worker for each GPU (parallel task) and ResNet model.

general resnet capable of scaling to arbitrary input size and
depth. Each block in the general network consists of two
convolutional layers with 10 input and output channels,
ReLU activation, and batch normalization. We conducted
scalability studies on Virginia Tech’s TinkerCliffs and Infer
GPU clusters. Each of up to 3 A100 nodes on TinkerCliffs
contains two 64-core AMD EPYC 7742 processors, 2TB of
RAM, 8 NVIDIA A100 GPUs, and are connected using HDR
Infiniband. Each of up to 16 T4 nodes on Infer contains two
16-core Intel Xeon Gold 6130 processors, 192GB of RAM, 1
NVIDIA T4 GPUs, and are connected using EDR Infiniband.
Each of up to 24 P100 nodes on Infer contains two 12-core
Intel Xeon E5-2680 processors, 512GB of RAM, 2 NVIDIA
P100 GPUs, and are connected using ethernet.

Results of a weak scalability study on ResNet34,
ResNet50, and ResNet101 are shown in Figure 7 for P100
and T4 GPUs and in Figure 8 for A100 GPUs. Per-GPU
input sizes are in Table 1. These sizes were chosen to fill
available GPU memory, yielding a maximum input image
size of 12,000× 18,000 for ResNet101. As this is a 2D study,
partitions are 2D and as square as possible, i.e., for 24 GPUs
the partition is 4 × 6 not 3 × 8. In the presence of high
GPU memory bandwidth and fast interconnect (e.g., on
the T4 cluster), we observe excellent scalability. For lower
bandwidth and slower interconnect (e.g., the P100 cluster),
we observe an expected performance degradation. In the
A100 study, where the first 8 GPUs are on a single node, we
observe an increase in run time until a 2nd compute node
is required. From 1 to 8 GPUs, the cost increases due to
increases in data movement within the node. For 9 workers,
the maximum amount of communication is achieved – the
middle worker has to communicate with 4 neighbors. We
observe similar behavior in for the T4 study, but it is less
pronounced as network effects manifest after only 2 GPUs.

We also investigated scalability with respect to depth
of the network for resnets with the above block structure,
depth d = 5 × P , where P is the number of GPUs, and
input of size 1,400× 1,400. Results of the performance study
are shown in figure 6, where the y-axis is the mean time to
train 100 batches of batch size 1. As above, we observe better
performance on the T4 cluster, likely for similar reasons. As
the network deepens, per-halo communication volume is
quite small, and the total number of communications on
the network is high, reducing performance. We anticipate
that the performance of very deep distributed networks can
be improved by leveraging recent results in layer-parallel
training [35], and by integrating multiple-halos to maximize
the computation per communication.

5.3 3D U-nets
U-Nets were introduced by [33] for application to 2D image
segmentation. These networks are also applicable to 3D or

Fig. 9. Weak scaling study for 3D U-net in DistDL. Solid and dashed lines
are mean time per batch for forward and adjoint passes.

volumetric segmentation, yet the curse of dimensionality
manifests itself through enormous memory requirements [29].
We’ve implemented a 3D version of classical depth 5 U-Net
of [33] using DistDL. The network has fundamentally the
same architecture as the original, except that we incorporate
batch normalization after each convolutional block and
replacing the transposed-convolutions in the up-cycle with
linear interpolation followed by 1D convolutions. Inputs
to the network are synthetic 3D phantoms that can be
expressed parametrically. In this way, we could arbitrarily
scale the inputs, and thus the computation and memory
requirements, with available parallel workers. Practical
problems of interest in our research have at least 1,0243

inputs, with potential long-range influence across the entire
domain, so our objective was to scale to at least that size.

We performed a weak scaling study on this network using
up to 183 nodes of Virginia Tech’s TinkerCliffs CPU cluster.
Each node contains two 64-core AMD EPYC 7702 processors,
256GB of RAM, and are connected using HDR Infiniband. To
optimally utilize the EPYC CPUs, we assigned each MPI task
4 OpenMP threads, meaning one node could support up to 32
workers. This also provided each worker with 8GB of RAM,
similar to what would be available for an older GPU. For
each of P = p3 workers, for p = 1, 2, . . . , 18, we performed a
weak scaling study on three input configurations: n = 3×323,
n = 3× 483, and n = 1× 643 inputs per worker, where the
first number is the batch size and the second is the 3D feature
size. The largest inputs per worker represent the approximate
upper bound before some task exceeded memory limitations.
At the largest scale, this is an input of size 1,1523 distributed
over 5,832 parallel tasks and 23,328 cores.

Results of the performance study are shown in Figure 9,
where the y-axis is the mean time to train 10 batches at the
given size. For a more representative sample, we discard
the time for the initial batch as there is some overhead in
the first pass that is not present for subsequent batches. We
observe excellent scalability in the adjoint phase, especially
for very large problem sizes – increasing the workload does
not commensurately increase the execution time. In the
forward phase, scaling is less ideal, but further investigation
is required to fully understand this behavior. Considering
the above results for resnet scaling in GPU environments, we
anticipate similar performance on GPU clusters, provided
they have sufficient memory.

PREPRINT, VIA RJH.IO, SUBMITTED TO IEEE TPDS 11

6 DISCUSSION & OUTLOOK

We have presented a linear-algebraic framework for express-
ing data movement in distributed deep learning. With this
approach, we have constructed a set of parallel primitives
for high-order tensors (and their adjoints) which can be
used to implement common neural network functions. Using
DistDL, a concrete realization of the principles developed in
this paper, we have empirically demonstrated the simplicity
and effectiveness of this data movement model on large-scale
neural networks on both CPU and hybrid CPU-GPU clusters,
using MPI to perform the underlying communication. We
believe that this effort provides a path toward democrati-
zation of HPC technology in deep learning, the same way
that the broad availability of PyTorch, Tensorflow, and cloud
computing technologies have democratized classical ML.

Future development of these algorithms will be highly
dependent on the target distributed computing architecture
and the target DNN structure. For example, modern GPUs
and custom ML accelerator chips have access to Remote
Direct Memory Access [36] (RDMA) technology, affording
high-bandwith direct communication between accelerators.
Our data movement model simply abstracts classical data
movement concepts and can easily absorb these, or alterna-
tive interfaces to GPU-to-GPU communication technologies,
whether or not they are accessible through MPI [37]. Future
developments will improve both the forward and adjoint
performance of the distributed network layers by overlap-
ping work in the data movement and computational phases,
however, this may be challenging to express as cleanly as
the current implementation while maintaining re-entrance.
We anticipate that increasing the number of layers that can
be computed without a halo-exchange, aggressive idling
of workers in narrow network components, integration of
pipelining, and improvements to dense layers will provide
additional improvements to parallel efficiency. Optimal
deployment of these new directions will require further
study on optimal network architecture design for distributed
environments. With many technologies at play, care must be
taken to design networks so that computation volumes, data
movement surfaces, and hardware properties are properly
optimized to the needs of the problem and the available
hardware. The initial studies presented here are promising,
yet significant improvements to efficiency can still be made.

Our approach to parallelism in deep learning is readily
applicable to the largest problems in classical deep learning,
such as natural language processing, volumetric segmenta-
tion, and video processing, as well as emergent extreme-scale
problems in scientific machine learning [2], such those posed
through physics-informed neural networks [38], [39] and
extreme-scale physics-driven inversion [14], [40]. In these
later contexts, following our inspiration from classical HPC
data movement, we believe our model will help bridge the
gap between parallelism in deep learning and the standard
HPC software tools available for scientific simulation.

ACKNOWLEDGMENTS

RJH is supported by the US Department of Energy Of-
fice of Science under award DE-SC0022041. TJG was sup-
ported by the Luther and Alice Hamlett Undergraduate
Research Support program. The authors especially thank

Justin Krometis and Matthew Brown from Virginia Tech’s
Advanced Research Computing (ARC) for system support
and coordination of large-scale tests on ARC clusters. They
also thank Ananiya Admassu, Mason Beahr, and Sarah
Kauffman, a Virginia Tech computational modeling and data
analytics Capstone team, for their project studying feasibility
of 3D distributed U-nets.

REFERENCES

[1] T. Brown et al., “Language models are few-shot learners,” in
Advances in Neural Information Processing Systems, H. Larochelle,
M. Ranzato, R. Hadsell, M. F. Balcan, and H. Lin, Eds., vol. 33.
Curran Associates, Inc., 2020, pp. 1877–1901.

[2] N. Baker et al., “Workshop Report on Basic Research Needs
for Scientific Machine Learning: Core Technologies for Artificial
Intelligence,” USDOE Office of Science (SC), Washington, D.C.
(United States), Tech. Rep., Feb. 2019.

[3] A. Karpatne et al., “Theory-Guided Data Science: A New Paradigm
for Scientific Discovery from Data,” IEEE Transactions on Knowledge
and Data Engineering, vol. 29, no. 10, pp. 2318–2331, Oct. 2017.

[4] T. Kurth et al., “Exascale Deep Learning for Climate Analytics,”
in SC18: International Conference for High Performance Computing,
Networking, Storage and Analysis. Dallas, TX, USA: IEEE, Nov. 2018,
pp. 649–660.

[5] L. Yang et al., “Highly-scalable, Physics-Informed GANs for
Learning Solutions of Stochastic PDEs,” in 2019 IEEE/ACM Third
Workshop on Deep Learning on Supercomputers (DLS), Nov. 2019, pp.
1–11.

[6] N. Ketkar, “Introduction to PyTorch,” in Deep Learning with Python:
A Hands-on Introduction, N. Ketkar, Ed. Berkeley, CA: Apress, 2017,
pp. 195–208.

[7] M. Abadi et al., “TensorFlow: A System for Large-Scale Machine
Learning,” in 12th USENIX Symposium on Operating Systems Design
and Implementation (OSDI 16), 2016, pp. 265–283.

[8] Microsoft, “Msr-fiddle/pipedream, https://github.com/msr-
fiddle/pipedream,” Mar. 2020.

[9] M. Shoeybi, M. Patwary, R. Puri, P. LeGresley, J. Casper, and
B. Catanzaro, “Megatron-LM: Training Multi-Billion Parameter
Language Models Using Model Parallelism,” arXiv:1909.08053 [cs],
Oct. 2019.

[10] A. Sergeev and M. Del Balso, “Horovod: Fast and easy distributed
deep learning in TensorFlow,” arXiv:1802.05799 [cs, stat], Feb. 2018.

[11] N. Shazeer, “Mesh-TensorFlow: Model Parallelism for Supercom-
puters (TF Dev Summit ‘19),” 2019.

[12] N. Shazeer et al., “Mesh-TensorFlow: Deep Learning for Supercom-
puters,” arXiv:1811.02084 [cs, stat], Nov. 2018.

[13] N. Dryden, N. Maruyama, T. Benson, T. Moon, M. Snir, and
B. Van Essen, “Improving Strong-Scaling of CNN Training by
Exploiting Finer-Grained Parallelism,” in 2019 IEEE International
Parallel and Distributed Processing Symposium (IPDPS), May 2019, pp.
210–220.

[14] A. Richardson, “Seismic Full-Waveform Inversion Using Deep
Learning Tools and Techniques,” arXiv:1801.07232 [physics], Jan.
2018.

[15] U. Naumann, The Art of Differentiating Computer Programs. SIAM,
2012.

[16] R. Plessix, “A review of the adjoint-state method for computing the
gradient of a functional with geophysical applications,” Geophysical
Journal International, vol. 167, no. 2, pp. 495–503, 2006.

[17] C. Bischof, L. Roh, and A. Mauer, “ADIC : An extensible automatic
differentiation tool for ANSI-C.” Software-Pract. Exper., vol. 27, no.
ANL/MCS-P626-1196, Dec. 1997.

[18] L. Hascoët and V. Pascual, “The Tapenade automatic differentiation
tool: Principles, model, and specification,” ACM Transactions on
Mathematical Software, vol. 39, no. 3, pp. 20:1–20:43, 2013.

[19] L. Clarke, I. Glendinning, and R. Hempel, “The MPI Message
Passing Interface Standard,” in Programming Environments for
Massively Parallel Distributed Systems, ser. Monte Verità, K. M.
Decker and R. M. Rehmann, Eds. Basel: Birkhäuser, 1994, pp.
213–218.

[20] R. J. Hewett, T. Grady, and J. Merizian, “DistDL: Distributed
Deep Learning for PyTorch,” Sep. 2021. [Online]. Available:
https://doi.org/10.5281/zenodo.5360401

https://doi.org/10.5281/zenodo.5360401

PREPRINT, VIA RJH.IO, SUBMITTED TO IEEE TPDS 12

[21] L. D. Dalcin, R. R. Paz, P. A. Kler, and A. Cosimo, “Parallel
distributed computing using Python,” Advances in Water Resources,
vol. 34, no. 9, pp. 1124–1139, Sep. 2011.

[22] B. Numpy, “Broadcasting — NumPy v1.18 Manual,”
https://numpy.org/doc/1.18/user/basics.broadcasting.html,
2020.

[23] W. Gropp, “Lecture 25: Strategies for Parallelism and Halo Ex-
change,” 2016.

[24] X. Zhang, X.-Y. Huang, and N. Pan, “Development of the Upgraded
Tangent Linear and Adjoint of the Weather Research and Forecast-
ing (WRF) Model,” Journal of Atmospheric and Oceanic Technology,
vol. 30, no. 6, pp. 1180–1188, Feb. 2013.

[25] A. Paszke et al., “Automatic differentiation in PyTorch,” Oct. 2017.
[26] G. Bosilca et al., “Tensor contraction on distributed hybrid architec-

tures using a task-based runtime system,” p. 10, 2018.
[27] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep

network training by reducing internal covariate shift,” in Proceed-
ings of the 32nd International Conference on Machine Learning, ser.
Proceedings of Machine Learning Research, F. Bach and D. Blei,
Eds., vol. 37. Lille, France: PMLR, 07–09 Jul 2015, pp. 448–456.

[28] Y. Wu and K. He, “Group normalization,” in Proceedings of the
European conference on computer vision (ECCV), 2018, pp. 3–19.

[29] T. LaBonte, C. Martinez, and S. A. Roberts, “We Know Where
We Don’t Know: 3D Bayesian CNNs for Credible Geometric
Uncertainty,” arXiv:1910.10793 [cs, eess], Apr. 2020.

[30] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based
learning applied to document recognition,” Proceedings of the IEEE,
vol. 86, no. 11, pp. 2278–2324, Nov. 1998.

[31] K. Simonyan and A. Zisserman, “Very deep convolutional networks
for large-scale image recognition,” in International Conference on
Learning Representations, 2015.

[32] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for
image recognition,” CoRR, vol. abs/1512.03385, 2015. [Online].
Available: http://arxiv.org/abs/1512.03385

[33] O. Ronneberger, P. Fischer, and T. Brox, “U-Net: Convolutional
Networks for Biomedical Image Segmentation,” in Medical Image
Computing and Computer-Assisted Intervention – MICCAI 2015, ser.
Lecture Notes in Computer Science, N. Navab, J. Hornegger, W. M.
Wells, and A. F. Frangi, Eds. Springer International Publishing,
2015, pp. 234–241.

[34] L. Ruthotto and E. Haber, “Deep Neural Networks Motivated by
Partial Differential Equations,” Journal of Mathematical Imaging and
Vision, vol. 62, no. 3, pp. 352–364, Apr. 2020.

[35] S. Günther, L. Ruthotto, J. B. Schroder, E. C. Cyr, and N. R. Gauger,
“Layer-parallel training of deep residual neural networks,” SIAM
Journal on Mathematics of Data Science, vol. 2, no. 1, pp. 1–23, 2020.

[36] J. Liu, J. Wu, and D. K. Panda, “High Performance RDMA-Based
MPI Implementation over InfiniBand,” International Journal of
Parallel Programming, vol. 32, no. 3, pp. 167–198, Jun. 2004.

[37] NVIDIA, “MPI Solutions for GPUs,”
https://developer.nvidia.com/mpi-solutions-gpus, Apr. 2017.

[38] Y. Yang and P. Perdikaris, “Adversarial uncertainty quantification
in physics-informed neural networks,” Journal of Computational
Physics, vol. 394, pp. 136–152, Oct. 2019.

[39] M. Raissi, P. Perdikaris, and G. E. Karniadakis, “Physics-informed
neural networks: A deep learning framework for solving forward
and inverse problems involving nonlinear partial differential
equations,” Journal of Computational Physics, vol. 378, pp. 686–707,
Feb. 2019.

[40] L. Yang et al., “Highly-scalable, Physics-Informed GANs for
Learning Solutions of Stochastic PDEs,” in 2019 IEEE/ACM Third
Workshop on Deep Learning on Supercomputers (DLS), Nov. 2019, pp.
1–11.

Russell J. Hewett received the B.S. in honors
degree in computer science from the Virginia
Polytechnic Institute and State University (Vir-
ginia Tech), Blacksburg, in 2005, and the Ph.D.
degree in computer science, with a certificate in
computational science & engineering from the
University of Illinois, Urbana-Champaign (UIUC),
in 2011.

Since 2018, he is Assistant Professor in the
Department of Mathematics at Virginia Tech,
where is also affiliate faculty in Computational

Modeling and Data Analytics. Before joining Virginia Tech, from 2014-
2018 he was research scientist and R&D project manager at Total SA’s
research office in Houston, TX. From 2011-2014, he was Postdoctoral
Associate in the Department of Mathematics at MIT, and by courtesy, with
Earth Resources Laboratory. He has made contributions to computational
aspects of inverse problems in solar physics and geophysics, has been a
member of the board of directors for the SunPy project since 2014 and
has released open source software for seismic inversion and parallel deep
learning. His research interests lie at the intersection of high-performance
computing, deep learning, and physics-driven inverse problems.

In 2021, he received the Early Career Research Program award from
the Department of Energy’s Office of Science. From 2008-2010 he was a
NASA Graduate Student Research Program (GRSP) fellow.

Thomas J. Grady II received the B.S. degree
in applied mathematics and the B.S. degree in
computational modeling and data analytics from
Virginia Polytechnic Institute and State University
(Virginia Tech), Blacksburg, in 2020.

Since 2021 he is a Ph.D. student in compu-
tational science and engineering at the Georgia
Institute of Technology (Georgia Tech) working
on large-scale distributed machine learning (ML)
for modeling and inverse problems of partial dif-
ferential equations (PDEs) as part of the Seismic

Laboratory for Imaging and Modeling. Before entering Georgia Tech,
from 2019-2021, he was a co-founder of the medical technology startup
Radian Health, where he worked as a machine learning and product
engineer. His contributions to Radian Health helped them to achieve
and improve a working prototype of their technology during and after
the Roanoke Business Accelerator Program. His research interests lie in
the intersection of large scale ML, numerical methods for PDEs, inverse
problems, and high performance computing; and how the combination of
these fields can bring about something greater than the sum of its parts.

Jacob Merizian Jacob Merizian received the
B.S. degree in computer science and the B.S.
degree in applied discrete mathematics from
from Virginia Polytechnic Institute and State Uni-
versity (Virginia Tech), Blacksburg, in 2021. He
performed undergraduate research on algorithms
in high performance computing and on brain-
computer-interfaces in neuroscience. He was a
leader in the Virginia Tech Programming Team
and represented the school at regional program-
ming competitions.

He has worked at Microsoft, where he worked on real-time visual-
izations for Azure Kubernetes clusters. Since 2019, he is co-founder
of Radian Health, a medical technology start-up for increasing patient
engagement in physical therapy with natural language processing and
computer vision tools. His research interests are in the interpretability of
artificial and biological intelligence.

http://arxiv.org/abs/1512.03385

PREPRINT, VIA RJH.IO, SUBMITTED TO IEEE TPDS 13

APPENDIX A
DERIVATIONS

A.1 Construction of move

The in-place move operator, Ma→b : Fm → Fm, takes input

x =

[
xa

xb

]
∈ Fm, produces output x̂ =

[
0a

xa

]
∈ Fm, and

Ma→b =

[
Oa Ob

Ia Ob

]
=

[
Oa Ob

Oa Ib

] [
Ia Ob

Ia Ib

] [
Ia Ob

Oa Ob

]
= KaSa→bKb.

The adjoint is,

M∗a→b = (KaSa→bKb)
∗ = K∗bS

∗
a→bK

∗
a = KbSb→aKa.

The out-of-place move operator, Ma→b : Fm → Fm′
,

takes input x =
[
xa

]
∈ Fm, produces output x̂ =

[
xa

]
∈

Fm′
, where Fm′

is a different memory subset of the same
size, and

Ma→b =

[
Oa

Ia

]
=
[
OaIb

] [Ia Ob

Ia Ib.

] [
Ia
Oa

]
= DaSa→bAb,

Here, the adjoint is,

M∗a→b = (DaSa→bAb)
∗ = A∗bS

∗
a→bD

∗
a = DbSb→aAa.

APPENDIX B
HALO EXCHANGE

B.1 Irregularly structured halo regions

The subsequent examples show the impact of different kernel
parameters and tensor partitions on the halo regions for
some different kernels and input sizes. In each case, the
driver for the computational load balance is the output
distribution. Consequently, absent any padding, assuming
the input comes from another layer with the same property,
the input is also balanced. While we show 1D examples
for simplicity of presentation, the same patterns emerge
in multidimensional cases, with more complex interactions
between the halo regions.

In the following figures, bulk regions are illustrated in
solid black lines and halo regions are given in dashed lines.
The numbers, arrows, and braces illustrate the access pattern.
Directional arrows indicate the input influence on output,
numbers in the input tensor are indices, and numbers in the
output tensor are the input index at the root of the kernel
for that output index. We have selected these examples for
their representative behavior and the kernel parameters are
commonly used in many DNNs.

B.2 “Normal” convolution

Assume a centered convolution kernel with size k = 5, input
tensor size n = 11, partition size P = 3, and assume a
zero-padding of width 2 is implicitly added to the input
boundaries. In Figure B10a we illustrate that this situation
yields the “normal”, uniform halo sizes that would, for
example, appear in a finite difference simulation.

B.3 Unbalanced convolution
Assume a centered convolution kernel with size k = 5,
input tensor size n = 11, partition size P = 3, and assume
a no padding is added to the input boundaries. Then the
output length is m = 7. In Figure B10b we illustrate that
this situation yields unbalanced halo sizes, where the first
and last workers have large, one-sided halos and the middle
worker has small, balanced halos.

B.4 Simple unbalanced pooling
Assume a right-looking pooling kernel with size k = 2, stride
s = 2, input tensor size n = 10, partition size P = 3, and
no padding or dilation. In Figure B10c we illustrate that
this situation yields both unbalanced halos and unnecessary
data in the input tensor, which manifests as a negative-sized
halo region. For the first worker, there is no halo. For the
second worker, only the right-side has a halo, with size 1.
The last worker does not have any halo, but to produce the
same output as the sequential case for this input, the first
entry of the input tensor must be removed when the input is
provided to the local pooling operator.

B.5 Complex unbalanced pooling
Assume a right-looking pooling kernel with size k = 2, stride
s = 2, input tensor size n = 20, partition size P = 6, and
no padding or dilation. In Figure B10d we illustrate that this
situation yields many workers with unbalanced halos. For
the first and second workers, there are no halos. The third
worker has a right halo but no left halo. The 4th worker has
1 extra input on the left and a halo of length 2 on the right.
The 5th worker has 2 extra inputs on the left and a halo of
length 1 on the right. The final worker has no halos, but one
extra input on the left. In cases with extra input data, those
entries of the input tensor actually has to be removed when
the input is provided to the local pooling operator.

B.6 Generalized tensor halo exchange
Here we illustrate the generalized, unbalanced halo exchange
on an order-2 tensor, partitioned by a P = 2 × 2 partition.
While the algorithm works for tensors of arbitrary order
with arbitrary partitions, an order-2 tensor is sufficient to
illustrate the concept. In Figure B11a, we have partitioned
the tensor into four unequal, but load-balanced subtensors.
The colors will be maintained throughout subsequent figures
to help illustrate data ownership. The differences in size are
exaggerated for clarity. As seen in Figure B12a, where gray
regions are the halo region, workers 0 and 2 require no data
from workers 1 and 3, but share width 3 data with them,
workers 0 and 1 require width 2 data from workers 2 and 3,
workers 2 and 3 require width 4 data from workers 0 and 1,
and there are interior halos only. We have chosen the vertical
dimension to perform the first exchange.

Figure B12 illustrates the sequence of copy operations
in the forward halo exchange algorithm. After two steps
(Figures B12b and B12c), the final exchanged result is in
Figure B12d. The exchange pattern is nested to minimize
communication volume, as for larger, higher-rank tensors
these volumes grow quickly. The gray arrows in the second
exchange phase indicate that no data needs to be shared. We

PREPRINT, VIA RJH.IO, SUBMITTED TO IEEE TPDS 14

Input:

Output:

− − 0 1 2 3 4 5

0 1 2 3

Worker 0

2 3 4 5 6 7 8 9

4 5 6 7

Worker 1

6 7 8 9 10 − −

8 9 10

Worker 2

(a)

Input:

Output:

0 1 2 3 4 5 6

2 3 4

Worker 0

3 4 5 6 7 8

5 6

Worker 1

5 6 7 8 9 10

7 8

Worker 2

(b)

Input:

Output:

0 1 2 3

0 2

Worker 0

4 5 6 7

4 6

Worker 1

7 8 9

8

Worker 2

(c)

Input:

Output:

0 1 2 3

0 2

Worker 0
4 5 6 7

4 6

Worker 1
8 9 10 11

8 10

Worker 2
11 12 13 14 15

12 14

Worker 3
14 15 16 17

16

Worker 4
17 18 19

18

Worker 5

(d)

Fig. B10. Examples of possible halo patterns, such as (a) uniform halos induced by a k = 5 centered kernel and width 2 padding; (b) non-uniform
halos induced by a k = 5 centered kernel and no padding; (c) unbalanced induced by a k = 2 right-looking kernel, with stride 2; and (d) unbalanced
induced by a k = 2 right-looking kernel, with stride 2.

(a) (b)

Fig. B11. Data (a) before forward halo exchange and (b) after adjoint halo exchange for P = 2× 2 partition of a order-2 tensor.

have omitted the action on the send and receive buffers, for
clarity.

Figure B13 illustrates the sequence of add-clear operations
in the adjoint halo exchange algorithm. Figure B13a shows
the starting state, where each rank has input data starting in
its halo regions. After two steps (Figures B13b and B13c), the
final exchanged result is in Figure B13d. The checkerboard
patterns indicate summation. The gray arrows in the adjoint
of the second exchange phase indicate that no data needs to
be shared.

PREPRINT, VIA RJH.IO, SUBMITTED TO IEEE TPDS 15

(a) (b)

(c) (d)

Fig. B12. Forward unbalanced halo exchange for P = 2× 2 partition of a order-2 tensor, from (a) setup, (b) and (c) directional exchanges, to (d) final
result.

(a) (b)

(c) (d)

Fig. B13. Adjoint unbalanced halo exchange for P = 2× 2 partition of a order-2 tensor, from (a) setup, (b) and (c) directional exchanges, to (d) final
result.

	Introduction
	Linearity & Data Movement
	Primitive Memory Operations
	Allocation & Deallocation
	Clear
	Add
	Copy
	Move

	Classical Parallel Primitives
	Point-to-point Operations
	Scatters and Gathers
	Broadcasts
	Reductions
	All-to-all

	Parallel Primitives for Tensors
	Tensor Partitions
	Primitives
	Broadcast
	SumReduce
	AllSumReduce
	Repartition
	HaloExchange

	Implementation & Validation

	Domain-decomposed Layer Functions
	Local Functions
	Down- or Up-sampling Layers
	Convolutional Layers

	Global Functions
	Dense Linear Layers
	Normalization Layers

	Loss Functions

	Domain-decomposed Neural Networks & Distributed Performance
	Inputs
	Residual Neural Networks
	3D U-nets

	Discussion & Outlook
	References
	Biographies
	Russell J. Hewett
	Thomas J. Grady II
	Jacob Merizian

	Appendix A: Derivations
	Construction of move

	Appendix B: Halo exchange
	Irregularly structured halo regions
	``Normal'' convolution
	Unbalanced convolution
	Simple unbalanced pooling
	Complex unbalanced pooling
	Generalized tensor halo exchange

